Das Ende der "Eisenzeit": Neuer Hochleistungswerkstoff der Zukunft

Wissenschaftspreis des Stifterverbandes für Prof. Martin Jansen vom Max-Planck-Institut für Festkörperforschung

Für seine Arbeiten auf dem Gebiet der modernen Hochleistungskeramiken wird Prof. Martin Jansen, Direktor am Max-Planck-Institut für Festkörperforschung in Stuttgart, der mit 50 000 Euro dotierte Wissenschaftspreis des Stifterverbandes für die Deutsche Wissenschaft verliehen. Die Auszeichnung für außergewöhnliche Erfolge bei der Umsetzung von Ergebnissen der Grundlagenforschung in Anwendungen wird ihm im Rahmen der Jahresversammlung des Stifterverbandes am 24. Juni 2004 in Leipzig überreicht.

Mit einem innovativen Konzept gelang es Martin Jansen und seinem Team, eine neue Klasse keramischer Hochleistungswerkstoffe zu entwickeln, die bald schon metallische Werkstoffe ersetzen könnten. Stahl – wegen seiner guten Formbarkeit und hoher Zugfestigkeit seit dem 19. Jahrhundert der universelle Werkstoff – toleriert nur vergleichsweise niedrige Temperaturen. Daher müssen in Verbrennungsmotoren zusätzlich Kühlsysteme enthalten sein. Flugzeugturbinen zum Beispiel werden so nicht nur schwer, sondern es entstehen beim Verbrennungsvorgang an den gekühlten Innenwänden auch umweltschädliche Stickoxide. Mit einem neuen, möglichst leichten Werkstoff, der höheren Temperaturen ohne Kühlung standhielte, ließen sich solche Motoren ressourcen- und umweltschonend bauen.

Kandidaten für einen solchen Werkstoff sucht man schon seit langem unter den Keramiken. Deren schlechte mechanische Eigenschaften – vor allem ihre Sprödigkeit – haben die Ingenieure bislang davon abgehalten, sie anstelle metallischer Werkstoffe einzusetzen. Martin Jansen jedoch wollte den Ingenieuren einen Werkstoff mit einem völlig neuen Eigenschaftsprofil anbieten: eine temperaturstabile amorphe Keramik. Im Gegensatz zu so manchem Fachkollegen war Jansen davon überzeugt, dass es durch geschickte Wahl der chemischen Elemente möglich sein müsse, hinreichend stabile Netzwerke aufzubauen, die auch bei hohen Temperaturen amorph bleiben. Theoretisch sollten sich aus Silizium, Bor, Stickstoff und Kohlenstoff solche, wenn auch nicht thermodynamisch stabilen, so doch metastabilen dreidimensionalen Netzwerke aufbauen lassen. Die starken kovalenten Bindungen zwischen den Netzwerkpartnern sollten ein Umordnen der chemischen Bindungen unwahrscheinlich machen und somit die Kristallisation verhindern.

Martin Jansen baute solche Festkörper gezielt im Labor auf, indem er von einfachen Molekülen ausging, in denen die gewünschten Bindungen bereits „angelegt“ waren. Daraus stellte er ein Polymer her, das sich unter Hitze zur gewünschten Keramik zersetzen lässt. Dieser Weg vom Molekül über das Polymer zum Festkörper war nicht nur eine neuartige Synthesestrategie, auch war mit der polymeren Zwischenstufe das Tor zur Anwendungstechnik weit aufgestoßen. Denn aus dem Polymer lassen sich Pulver oder dünne Schichten herstellen, aber auch Fasern ziehen.

Die daraus durch thermische Zersetzung gewonnenen amorphen Keramikfasern erfüllten die hohen Erwartungen der Forscher: Die Fasern bleiben nicht nur bis 1900°C stabil, sondern sind auch noch bis 1600°C an Luft einsetzbar, denn eine dünne Schutzschicht schützt sie vor Oxidation. Die neue Keramik ist überdies leicht und extrem beständig bei Temperaturwechsel. Mit der Entwicklung dieser Werkstoffklasse betrat Martin Jansen Neuland. Dabei handelt es sich nicht um eine Zufallsentdeckung, denn von Beginn an wurde auf die Herstellung amorpher metastabiler Netzwerke gezielt.

Möglich war diese Entwicklung nur, weil Grundlagenforschung, Anwendungstechnik und Industrie von Anfang an eng zusammen gearbeitet haben. Wenn auch zunächst die Hochtemperaturanwendungen wie Flugzeug- und Kraftwerksturbinen dominieren dürften, zeichnen sich jetzt schon weitere Einsatzmöglichkeiten ab. Die neue amorphe Keramik könnte im 21. Jahrhundert jene bedeutende Rolle einnehmen, die Stahl im 19. Jahrhundert hatte.

Die Entwicklung der amorphen Hochleistungskeramik als Werkstoffklasse zeigt, dass Grundlagenforschung, anwendungsoffen und im Netzwerk betrieben, neue Wege eröffnet, und so dazu beiträgt, die großen Zukunftsprobleme zu lösen. Für die Jury des Wissenschaftspreises ist dies der Paradefall eines erfolgreichen Wissens- und Technologietransfers vom Labor in die industrielle Praxis.

Martin Jansen studierte in den sechziger Jahren an der Universität Gießen Chemie, wo er auch 1973 promovierte. 1978 habilitierte er sich im Fach Anorganische Chemie, übernahm von 1981 bis 1987 einen Lehrstuhl an der Universität Hannover, dann von 1987 bis 1997 an der Universität Bonn. Seit 1998 ist er Direktor am Max-Planck-Institut für Festkörperforschung, Stuttgart, und leitet dort die Abteilung für Festkörperchemie. Seine Forschungsergebnisse sind inzwischen in die Standardlehrbücher eingegangen und wurden mehrfach mit Auszeichnungen gewürdigt: u.a. Gottfried-Wilhelm-Leibniz-Preis, Otto-Bayer-Preis, Alfred-Stock-Gedächtnis-Preis.

Weitere Informationen erhalten Sie von:

Dr. Angela Lindner
Stifterverband für die Deutsche Wissenschaft e.V.
Tel.: +49 2 01 84 01-158, Fax: -459
E-Mail: a.lindner@stifterverband.de

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hochleistungsfähiger Ceriumoxid-Thermoschalter für effiziente Wärmeregelung und nachhaltige Energiesysteme.

Langlebig, Effizient, Nachhaltig: Der Aufstieg von Ceriumoxid-Thermoschaltern

Bahnbrechende Thermoschalter auf Basis von Ceriumoxid erreichen bemerkenswerte Leistungen und revolutionieren die Steuerung des Wärmeflusses mit nachhaltiger und effizienter Technologie. Ceriumoxid-Thermoschalter revolutionieren die Steuerung des Wärmeflusses Thermoschalter, die den Wärmeübergang…

Industrielle Roboter senken CO₂-Emissionen in der Fertigung für nachhaltigen Welthandel.

Wie industrielle Roboter Emissionen in der globalen Fertigung reduzieren

Eine neue Studie untersucht die Schnittstelle zwischen industrieller Automatisierung und ökologischer Nachhaltigkeit, wobei der Schwerpunkt auf der Rolle industrieller Roboter bei der Reduzierung der Kohlenstoffintensität von Exporten aus der Fertigung…

3D-gedruckte Biokeramische Transplantate für personalisierte kraniomaxillofaziale Knochenrekonstruktion.

Patienten können durch präzise, personalisierte Biokeramische Transplantate heilen

Eine kürzlich veröffentlichte Übersichtsarbeit revolutioniert die Landschaft der craniomaxillofazialen Knochenregeneration durch die Einführung personalisierter biokeramischer Transplantate. Diese bahnbrechende Forschung untersucht die Herstellung und das klinische Potenzial synthetischer Transplantate, die mittels…