Schmierstoffe am Computer charakterisieren und designen

Alkan-Moleküle, deren Viskosität mittels Molekulardynamiksimulation bei Hochdruck- und Hochtemperatur-Bedingungen berechnet wurden (links) sowie benötigte Molekül-Struktureigenschaften © Fraunhofer IWM

Um einen Schmierstoff neu zu entwickeln oder zu verbessern ist es wichtig, sein Verhalten genau zu kennen: Druck, Temperatur, Scherrate und Viskosität sind dabei wichtige Größen. »Den Schmierfilm experimentell zu vermessen ist sehr schwer, weil die dazu benötigen Bedingungen kaum kontrolliert einzustellen sind«, erklärt Dr. Kerstin Falk, Mitarbeiterin der Gruppe Multiskalenmodellierung und Tribosimulation des Freiburger Fraunhofer-Instituts für Werkstoffmechanik IWM.

»In einigen Bereichen treten zum Beispiel so extreme Pressungen auf, dass lokal ein Druck im Giga-Pascal-Bereich entsteht«, so die Expertin für Tribologie, der Lehre von Reibung und Verschleiß. Simulationen können dort weiterhelfen, wo Experimente schwierig sind:

Bisher wurden Vorhersagen für das Schmierstoffverhalten bei hohem Druck meist aus »Hochrechnungen« der Ergebnisse von Experimenten in normalem Druckbereich gewonnen. Leider versagt dieses Vorgehen jedoch bei den extrem hohen Drücken, die lokal in geschmierten Reibkontakten auftreten.

Viskosität bei hohem Druck exakt berechnen

Mit atomistischen Molekulardynamiksimulationen kann jedoch die Physikerin Schmierstoffeigenschaften wie die Viskosität unter kontrollierten, beliebig einstellbaren Druck- und Temperaturbedingungen vorhersagen. »Wir haben die Viskosität sehr erfolgreich für verschiedene Modellschmierstoffe bei Druck bis hin zu 700 Mega-Pascal berechnet«, sagt Dr. Kerstin Falk.

»Unsere Modell-Schmierstoffe bestanden aus einfachen linearen oder aus verzweigten Alkanen«, erklärt sie weiter. Alkane oder Paraffine sind sehr stabile Ketten aus Kohlenstoff und Wasserstoff, und bilden den Grundbestandteil vieler gängiger Öle und Kraftstoffe.

Schmierstoffe charakterisieren aufgrund ihrer Moleküleigenschaften

Doch Falks eigentliches Ziel war, ein praktikableres Vorhersagemodell als bisher zu erhalten. Es sollte die Berechnung der Viskositätswerte für bestimmte Bedingungen im Reibspalt erlauben, ohne erst aufwändige Molekulardynamiksimulationen durchführen zu müssen. Dazu nutzten Dr. Kerstin Falk und ihre Kollegen Dr. Daniele Savio und Prof. Michael Moseler atomistische Simulationen, die quasi wie eine »virtuelle Superlupe« Einblicke auf die mikroskopische Struktur und Dynamik der Schmierstoffmoleküle ermöglichen.

So fand das Team heraus, welche drei molekularen Eigenschaften eines Schmierstoffs seine Viskosität maßgeblich bestimmen: die Molekül-Querschnittsflächen, die Kettenflexibilität und der Abstand zwischen den einzelnen Molekülen. Sind diese Eigenschaften einmal bestimmt, lässt sich damit die Viskosität eines Schmierstoffs bei verschiedensten Bedingungen einfach und genau berechnen.

»Umgekehrt benutzt können wir mit dieser Simulationsmethode auch die passenden Moleküle für bestimmte tribologische Beanspruchungen finden«, sagt Dr. Kerstin Falk. »Und in Kombination mit zusätzlichen quantenchemischen Simulationen zur Wechselwirkung des Schmierstoffs mit Bauteiloberflächen können wir unseren Kundinnen und Kunden den passenden Schmierstoff für ihre Anwendung vorschlagen«, fügt Prof. Michael Moseler hinzu.

In Zukunft soll mit diesen neuen Ergebnissen als Basis auch das Schmierstoffverhalten bei sehr großen Geschwindigkeiten und damit großen Scherraten untersucht werden. Und es wird betrachtet, wie sich ein Schmierstoff in einem sehr engen Reibspalt verhält, der nur wenige Moleküldurchmesser breit ist. Auch andere Schmierstoffe können Dr. Kerstin Falk und ihre Kollegen mit der neuen Methode charakterisieren – beispielsweise wasserbasierte Schmierstoffe für umweltverträgliche Anwendungen.

Publikation:
Falk, K.; Savio, D.; Moseler, M.; Nonempirical free volume viscosity model for alkane lubricants under severe pressures, Physical Review Letters 124/10 (2020) 105501, DOI: https://doi.org/10.1103/PhysRevLett.124.105501

Dr. Kerstin Falk, Telefon +49 761 5142-242, kerstin.falk@iwm.fraunhofer.de

Falk, K.; Savio, D.; Moseler, M.; Nonempirical free volume viscosity model for alkane lubricants under severe pressures, Physical Review Letters 124/10 (2020) 105501, DOI: https://doi.org/10.1103/PhysRevLett.124.105501

https://www.iwm.fraunhofer.de/content/dam/iwm/de/presse/PM_PDFs/Schmierstoffe_Co… Pressemeldung als PDF
https://www.iwm.fraunhofer.de/de/geschaeftsfelder/tribologie/multiskalenmodellie… Multiskalenmodellierung und Tribosimulation am Fraunhofer IWM

Media Contact

Katharina Hien Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…