Graphen: Auf den Belag kommt es an

Indiumoxid auf einer Graphen-Unterlage Bild: TU Wien

Graphen besteht aus einer einzigen Schicht von Kohlenstoffatomen. Außergewöhnliche elektronische, thermische, mechanische und optische Eigenschaften haben Graphen zu einem der derzeit wohl meistuntersuchten Materialien gemacht.

Für viele Anwendungen in Elektronik und Energietechnik muss das Graphen allerdings mit anderen Materialien kombiniert werden: Da Graphen so dünn ist, ändern sich seine Eigenschaften drastisch, wenn andere Materialien damit in direkten Kontakt gebracht werden.

Graphen auf molekularer Ebene mit anderen Materialien zu kombinieren ist allerdings schwierig: Die Art, wie Graphen mit anderen Materialien interagiert, hängt nicht nur davon ab, welches Material man wählt, sondern auch davon, wie diese Materialien auf das Graphen aufgebracht werden.

Man klebt nicht eine fertige Materialschicht an das Graphen, sondern man bringt die passenden Atome so mit dem Graphen in Kontakt, dass sie sich direkt dort zusammenfügen und auf dem Graphen in der gewünschten Kristallstruktur „aufwachsen“.

Bisher waren die Mechanismen des „Wachstums“ von diesen anderen Materialien auf Graphen oft unklar. In einer neuen gemeinsamen Studie von Forschungsteams der TU Wien und der Universität Wien konnte man nun erstmals beobachten, wie das Material Indiumoxid auf Graphen aufwächst.

Die Kombination von Indiumoxid mit Graphen ist wichtig, beispielsweise für Displays und Sensoren. Die Ergebnisse wurden nun im Fachjournal „Advanced Functional Materials“ präsentiert.

Graphen-Pizza

„Wie bei einer Pizza kommt es in Graphentechnologie nicht nur auf den Graphen-Pizzaboden sondern auch auf dessen Belag an“, erklärt Bernhard C. Bayer vom Institut für Materialchemie der TU Wien, der Leiter der Studie. „Wie dieser Belag aufs Graphen aufgebracht wird, ist allerdings entscheidend.“

Meist lässt man Atome im gasförmigen Zustand auf dem Graphen kondensieren. Im Fall von Indiumoxid sind dies Indium und Sauerstoff. „Es gibt aber viele Parameter wie Hintergrunddruck, Temperatur oder die Geschwindigkeit, mit der man diese Atome aufs Graphen aufbringt, die das Ergebnis drastisch beeinflussen“, sagt Bernhard Bayer.

„Daher ist es wichtig, ein grundlegendes Verständnis zu entwickeln, welche chemischen und physikalischen Vorgänge dabei genau ablaufen. Dazu muss man den Bedeckungsprozess aber beobachten.“

Genau dies ist dem Forschungsteam jetzt gelungen: Im Elektronenmikroskop wurden erstmals die einzelnen Schritte des Wachstums von Indiumoxid auf Graphen beobachtet. Dabei konnte eine Auflösung erzielt werden, die einzelne Atome klar abbildet.

Zufällig verteilt oder perfekt am richtigen Ort

„Besonders interessant war für uns dabei die Beobachtung, dass sich je nach Hintergrunddruck die Indiumoxidkristallite auf dem Graphen-Kristallgitter entweder willkürlich anordnen oder aber wie ein Legostein auf dem anderen einrasten. Dieser Unterschied in der Anordnung kann einen großen Einfluss auf die Anwendungseigenschaften der kombinierten Materialien machen“, sagt Kenan Elibol, Erstautor der Studie.

Die neuen Erkenntnisse sollen in Zukunft genutzt werden, um die Kombination von Graphen mit anderen Materialien planbarer und kontrollierbarer für die jeweiligen Anwendungsanforderungen zu machen.

Dr. Bernhard Bayer
Institut für Materialchemie
Fachbereich Molekulare Materialchemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T +43 (1) 58801 – 165 228
Twitter: @nanobayer
bernhard.bayer-skoff@tuwien.ac.at

Elibol et al., Process Pathway Controlled Evolution of Phase and Van-der-Waals Epitaxy in In/In2O3 on Graphene Heterostructures, Advanced Functional Materials, 2020, early view, https://doi.org/10.1002/adfm.202003300

Media Contact

Florian Aigner Technische Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…