Wie Gewitterzellen miteinander ‚kommunizieren‘

Gewitterwolken in Palau

Sonia Bejarano, Leibniz-Zentrum für Marine Tropenforschung (ZMT)

Ein Großteil der Niederschläge in den Tropen fällt aus Zusammenschlüssen mehrerer Gewitterzellen zu einem großen Gewitterkomplex – in der Fachsprache mesoskalige Konvektivsysteme genannt. Eine neue Studie von Forschenden des Leibniz-Zentrums für Marine Tropenforschung (ZMT), der Jacobs University und der Universität Kopenhagen gibt jetzt weitere Aufschlüsse über die Vorgänge bei der Entstehung großer Gewitteransammlungen. Die Ergebnisse der Modellsimulation sind kürzlich in der Fachzeitschrift npj Climate and Atmospheric Science erschienen.

Mesoskalige Konvektivsysteme (kurz: MCSs von ‚mesoscale convective system‘) sind Gewitterkomplexe von mindestens 100 Kilometern Durchmesser, die bis zu zehn Stunden anhalten und Vorläufer von Tropenstürmen sein können. Meistens werden sie begleitet von extremen Niederschlägen, starken Winden und erhöhtem Blitzaufkommen. Wie genau jedoch Gewitterzellen solche Ansammlungen oder Cluster bilden, konnte bisher noch nicht im Detail geklärt werden.

Eine Studie des Physikers Jan O. Haerter, Leiter der Arbeitsgruppe ‚Komplexität und Klima‘ am ZMT und Professor für Komplexe Systeme an der Jacobs University, lässt nun darauf schließen, dass ein Teil des ‚Clusterings‘ durch Selbstorganisation entsteht.

„Die Gewitterzellen ‚kommunizieren‘ gewissermaßen miteinander, wodurch es zu Wechselwirkungen von innen heraus kommt“, fasst Haerter die Untersuchungsergebnisse zusammen. „Eine wichtige Rolle spielen dabei sogenannte Kaltluftseen, die unterhalb der Gewitterwolken entstehen und sich in die Umgebung ausbreiten.“

Gewitterwolken bilden Cluster bei stark variierenden Oberflächentemperaturen

Anhand von Modellsimulationen auf großen Parallelrechneranlagen konnte das Forscherteam zeigen, dass sich über Land Cluster oder ‚Verklumpungen‘ von Gewitterzellen vor allem dann bilden, wenn die zugrundeliegende Oberflächentemperatur zwischen Tag und Nacht stark variiert. Dabei reichen Temperaturunterschiede von sieben Grad Celsius zwischen Tageshöchstwerten und nächtlichen Tiefstwerten bereits aus, wie sie in vielen tropischen Regionen vorkommen.

Über dem Ozean hingegen, so die Berechnungen der Wissenschaftler, entsteht kein Clustering (Klumpeneffekt), solange die Temperaturen der Wasseroberfläche relativ konstant sind. „Bei Temperaturschwankungen zeigen unsere Simulationen allerdings, dass es auch über den Meeren zu Clustering und somit zur Entstehung von mesoskaligen Konvektivsystemen kommt“, berichtet Haerter.

Kaltluftseen lösen in einer Kettenreaktion weitere Gewitter aus

Ihre Ergebnisse untermauern die Forschenden mit vereinfachten, konzeptionellen Modellen, um die Wechselwirkungen in den Wolken zu erklären. Für die Interpretation der Autoren ist das Auftreten sogenannter ‚Cold Pools‘ oder Kaltluftseen entscheidend. Diese entstehen, wenn Niederschlag unterhalb von Gewitterwolken noch vor Erreichen der Erdoberfläche in der Luft verdunstet. Durch diese Verdunstung kühlt sich die Luft ab und sinkt. Beim Auftreffen auf die Oberfläche werden diese kalten Luftmassen seitlich abgelenkt und strömen kilometerweit in die Umgebung.

„Wenn sich die Kaltluftseen unterhalb einer Gewitterzelle in einem Radius ausbreiten, kommt es zwischen ihnen zu vereinzelten Kollisionen, was weitere Gewitterwolken entstehen lässt“, beschreibt Haerter das Modell. „An Punkten, wo diese ‚Cold Pools‘ die Luftmassen einschließen, wird die eingeschlossene Luft nach oben gedrückt. Dort entstehen dann neue Gewitterzellen, die wiederum Kaltluftseen erzeugen. So ergibt sich eine Kettenreaktion.“

Mit der aktuellen Studie zeigt das Forscherteam, wie bei kontinentaler Wolkenbildung große, kombinierte Kaltluftseen entstehen, die in der Lage sind, in einer Kettenreaktion über dem Land weitere Gewitter auszulösen – ein Vorgang der als „kontinentale Selbstorganisation“ bezeichnet wird.

Auswirkungen mesoskaliger Konvektivsysteme (MCS)

Bei Gewitterkomplexen von der Größe und Dauer eines MSC werden größere Regionen von starken Regenfällen und Winden getroffen als bei einzelnen Gewittern. Heftige, langanhaltende Niederschläge wiederum können zu Sturzfluten und Überschwemmungen führen, wenn Flüsse über die Ufer treten. Nährstoffe im Boden werden bei Starkregen aus dem Erdreich gewaschen und über die Flüsse in die Meere und Ozeane transportiert. Auch Sediment gelangt auf diese Weise aus dem Hinterland in die Küstenregionen.

Mesoskalige Konvektivsysteme sind häufig Vorläufer tropischer Wirbelstürme, die verheerende Auswirkungen auf die Küstenregionen haben und eine große Gefahr für die dort lebende Bevölkerung und Ökosysteme, wie Korallenriffe oder Mangroven, darstellen.

In Küstenregionen, insbesondere in den Tropen, können zwei Effekte zusammentreffen, sagt Haerter: „Einerseits haben wir die kontinentale Selbstorganisation von Gewitterclustern, die über dem Land entstehen, sich dort entladen oder aber Richtung Küste wandern, anderseits kann es bei Temperaturschwankungen über dem Wasser auch eine maritime Selbstorganisation geben, die zu MCSs und Wirbelstürmen über dem Meer führt.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jan O. Haerter | Leiter der Arbeitsgruppe Komplexität und Klima am Leibniz-Zentrum für Marine Tropenforschung (ZMT) und Professor für Komplexe Systeme an der Jacobs University Bremen

E-Mail: jan.haerter@leibniz-zmt.de

Tel: +49 (0) 151 – 71524696 oder +45 607 48 750

Originalpublikation:

Haerter, J.O., Meyer, B., Nissen, S.B. (2020). Diurnal self-aggregation. npj Climate and Atmospheric Science 3(1), pp. 2397-3722. DOI: 10.1038/s41612-020-00132-z

Weitere Informationen:

https://www.nature.com/articles/s41612-020-00132-z

http://www.leibniz-zmt.de

https://www.leibniz-zmt.de/de/neuigkeiten/im-fokus/on-topic/clustering-durch-selbstorganisation-wie-gewitterzellen-miteinander-kommunizieren.html

Media Contact

Andrea Daschner Presse- und Öffentlichkeitsarbeit
Leibniz-Zentrum für Marine Tropenforschung (ZMT)

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ist der Abrieb von Offshore-Windfarmen schädlich für Miesmuscheln?

Rotorblätter von Offshore-Windparkanlagen unterliegen nach mehrjährigem Betrieb unter rauen Wetterbedingungen einer Degradation und Oberflächenerosion, was zu erheblichen Partikelemissionen in die Umwelt führt. Ein Forschungsteam unter Leitung des Alfred-Wegener-Instituts hat jetzt…

Per Tierwohl-Tracker auf der Spur von Krankheiten und Katastrophen

DBU-Förderung für Münchner Startup Talos… Aus dem Verhalten der Tiere können Menschen vieles lernen – um diese Daten optimal auslesen zu können, hat das Münchner Startup Talos GmbH wenige Zentimeter…

Mit Wearables die Gesundheit immer im Blick

Wearables wie Smartwatches oder Sensorringe sind bereits fester Bestandteil unseres Alltags und beliebte Geschenke zu Weihnachten. Sie tracken unseren Puls, unsere Schrittzahl oder auch unseren Schlafrhythmus. Auf welche Weise können…