Kreislaufwirtschaft für Kunststoffe

Plastic in the sea
Photo: Jan Meßerschmidt

Biotechnologische Lösungen für Abbau und Recycling von Plastik.

Kunststoffe sind wunderbare Materialien. Sie sind extrem vielseitig und nahezu ewig haltbar. Doch das ist auch ein Problem. Nach rund 100 Jahren Kunststoffproduktion sind Plastikpartikel inzwischen überall: im Grundwasser, in den Ozeanen, in der Luft und in der Nahrungskette. Weltweit gibt es erhebliche Anstrengungen, die „Plastikkrise“ durch biotechnologische Methoden zu bewältigen. Allerdings beschränken sich die Fortschritte bislang auf eine bestimmte Art von Plastik, nämlich auf Polyester wie PET.

In einem Positionspapier in der Zeitschrift Nature Catalysis (DOI: 10.1038/s41929-020-00521-w) werden der gegenwärtige Stand der Forschung kritisch beleuchtet und Strategien für eine biobasierte Kreislaufwirtschaft für Kunststoffe vorgeschlagen.

Anspruchsvolle Lösungen sind nötig, um zu einer Kreislaufwirtschaft für Kunststoffe zu gelangen. Derzeit wird nur ein geringer Bruchteil der Kunststoffe durch energie- und kostenintensive Verfahren wiederverwertet. Eine Möglichkeit, bestimmte Kunststoffe in ihre Bausteine zu zerlegen, ist der Einsatz von Enzymen oder biotechnologischen Verfahren mithilfe von Mikroorganismen. Aus den von ihnen aufgespalteten Plastikbausteinen, auch Monomere genannt, könnten wieder neue Kunststoffe hergestellt werden.

Falls die Bausteine nicht wiederverwendet werden können, sollte das Plastik zumindest weitestgehend abgebaut werden, um die Umwelt zu entlasten und Rohstoffe zu gewinnen. Sowohl für die Wiederverwertung von Kunststoffen am Ende ihrer Nutzung als auch im Hinblick auf eine neutrale CO2-Bilanz kann die moderne Biotechnologie einen wichtigen Beitrag leisten.

In dem gemeinsam von Wissenschaftlern der Universität Greifswald http://www.uni-greifswald.de/, der RWTH Aachen https://www.rwth-aachen.de/, dem Fraunhofer Institut UMSICHT https://www.umsicht.fraunhofer.de/ und dem University College Dublin https://www.ucd.ie/ verfassten Beitrag „Possibilities and limitations of biotechnological plastic degradation and recycling“ wird der aktuelle Stand der Forschung auf diesem Gebiet beleuchtet und Strategien für zukünftige Entwicklungen aufgezeigt.

Die Autoren erforschen in dem von der Europäischen Union im Rahmen von Horizon 2020 geförderten Verbundprojekt MIX-UP http://www.mix-up.eu/ gemeinsam mit Wissenschaftlern aus China die Wertschöpfung aus Plastikabfällen, sowohl aus den Ozeanen als auch aus Haushalten, durch biotechnologische Verfahren. In diesen Verfahren nutzen Mikroorganismen die Abbauprodukte aus Kunststoffen in einem sogenannten „Up-cycling“ als Nahrungsquelle zur Herstellung werthaltiger Produkte.

„Während für den vielfältig genutzten Kunststoff Polyethylenterephthalat (PET) bereits hocheffiziente Enzyme entdeckt und verbessert wurden, die ein wirtschaftliches Recycling ermöglichen, gibt es für die meisten anderen Kunststoffe bislang kaum signifikante Fortschritte“, erläutert Prof. Uwe Bornscheuer von der Universität Greifswald. Dr. Ren Wei, der eine Nachwuchsgruppe am Institut für Biochemie zu diesem Thema leitet, führt aus: „Leider gibt es auch eine Reihe Veröffentlichungen, die falsche Hoffnungen wecken. In manchen Berichten über Kunststoff-fressende Insekten fehlen beispielsweise wissenschaftlich fundierte Belege.“

Prof. Lars Blank von der RWTH Aachen betont: „Wir müssen zwei Aspekte unterscheiden: Kunststoffe, die wir bewusst in die Natur ausbringen, wie beispielsweise Mulchfolien für die Landwirtschaft, müssen sehr rasch biologisch abgebaut werden können – also innerhalb von Wochen oder Monaten. Für langlebiges Plastik benötigen wir eine mittelfristige Lösung. Ein Abbau sollte innerhalb von wenigen Jahren – statt wie bisher in Hunderten von Jahren – sichergestellt sein.“ Die Autoren schlagen ein Szenario basierend auf den folgenden sechs Prinzipien vor: überdenken – ablehnen – reduzieren – wiederverwenden – recyceln – ersetzen. Angestrebt wird außerdem eine lebhafte Diskussion, wie eine Kreislaufwirtschaft für Kunststoffe in naher Zukunft erreicht werden kann.

Weitere Informationen
Wei, R., Tiso, T., Bertling, J. et al. (2020): „Possibilities and limitations of biotechnological plastic degradation and recycling,“ in: Nature Catalysis. https://www.nature.com/articles/s41929-020-00521-w
Hintergrundinformation: Behind the Paper https://chemistrycommunity.nature.com/posts/possibilities-and-limitations-of-bio…
Arbeitsgruppe Prof. Dr. Uwe Bornscheuer am Institut für Biochemie der Universität Greifswald https://biochemie.uni-greifswald.de/forschung/forschung-in-den-arbeitskreisen/or…

Plastik im Meer, ©Jan_Meßerschmidt
Das Foto kann für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen. Download http://www.uni-greifswald.de/pressefotos

Ansprechpartner an der Universität Greifswald

Prof. Dr. Uwe Bornscheuer
Institut für Biochemie
Felix-Hausdorff-Straße 4, 17489 Greifswald
Telefon 03834 420 4367
uwe.bornscheuer@uni-greifswald.de
ResearchGate: https://www.researchgate.net/profile/Uwe_Bornscheuer
LinkedIn: https://www.linkedin.com/in/uwe-bornscheuer-1581827a/

Dr. Ren Wei
Institut für Biochemie
Felix-Hausdorff-Straße 8, 17489 Greifswald
Telefon 03834 420 4455
ren.wei@uni-greifswald.de

https://www.uni-greifswald.de

Media Contact

Jan Meßerschmidt Presse- und Informationsstelle
Universität Greifswald

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…