Nicht mehr „schneller, als die Galaxis erlaubt“…

Simultaneous measurements of fluorescence spectra of highly charged ions in an EBIT and absorption spectra of molecular gases in a separated gas cell downstream. Monochromatic synchrotron radiation passes through both the ion trap and the gas cell.
MPIK

Physiker haben eine lang anhaltende Diskrepanz zwischen den gemessenen Geschwindigkeiten interstellarer Sauerstoffatome und anderer Elemente in unserer Galaxie behoben: Ein Unterschied von 380 km/s, den astrophysikalische Messungen der Röntgenabsorption durch Sauerstoffatome ergaben, hatte Astrophysikern Kopfschmerzen bereitet. Bei solchen Geschwindigkeiten könnte sich ein wesentlicher Teil dieses wichtigen Elements im Prinzip von der galaktischen Scheibe verflüchtigen, da die Fluchtgeschwindigkeit aus der Milchstraße vom Sonnensystem aus 580 km/s beträgt. Es bestand der Verdacht auf ein Problem mit den Messungen oder Kalibrierungen, aber man kannte den Grund einfach nicht.

Eine Kollaboration zwischen den Gruppen von Maurice Leutenegger, José Crespo und Sven Bernitt vom Goddard Space Flight Center der NASA, dem MPIK, dem Helmholtz-Institut Jena und anderen machte sich mit einer miniaturisierten Elektronenstrahl-Ionenfalle (electron beam ion trap, EBIT) von MPIK auf den Weg zur BESSY II-Synchrotronquelle nach Berlin, um diese Röntgenabsorption von atomarem Sauerstoff im Labor genau zu messen.

Die Apparatur, PolarX-EBIT, kann Ionen in hohen Ladungszuständen, wie beispielsweise, N6+ oder O6+ mit nur einem oder zwei Elektronen, ähnlich wie Wasserstoff oder Helium, herstellen. Hochgeladene Ionen haben Spektrallinien mit Mustern, die denen von Atomen mit der gleichen Anzahl gebundener Elektronen ähnlich sind, die jedoch energetisch in den Röntgenbereich übertragen sind. Es ging darum, die sehr genau theoretisch bekannten Röntgenlinien dieser wasserstoff- und heliumähnlichen Ionen als Standards für die Energiekalibrierung der Synchrotronstrahlung zu verwenden. Diese neue Methode könnte die Genauigkeit aller bisher verwendeten Kalibrierungsmethoden übertreffen.

Der experimentelle Aufbau an der BESSY-II-Synchrotronquelle.
MPIK

Eine mit der PolarX-EBIT verbundene Gasabsorptionszelle aus dem NASA-Inventar ermöglichte es dem MPIK-Doktoranden Steffen Kühn und seinen Teamkollegen, die zuvor verwendeten Röntgenabsorptionslinien für Gase, wie molekularen Sauerstoff und Stickstoff, oder atomares Neon gleichzeitig mit den Kalibrierlinien zu messen. Mit dieser Art von Messaufbau und der hohen Genauigkeit der theoretisch berechneten Energien für die in der PolarX-EBIT gespeicherten Ionen konnten viele systematische Unsicherheiten früherer Methoden ausgeschlossen werden.

Die Datenanalyse ergab, dass die Energiewerte der Absorptionslinien von molekularem Sauerstoff, die in der weltweiten Synchrotron-Community sehr häufig zur Kalibrierung verwendet werden, um 0,45 eV bei 540 eV, d. H. um fast ein Promille, falsch lagen. Der neue Wert impliziert eine „Abbremsung“ des atomaren Sauerstoffs im interstellaren Raum unserer Galaxis um 250 km/s, wodurch dieses Element dann in den „zulässigen“ und typischen Bereich von etwa +/− 100 km/s zurückfällt.

Mit der vorgestellten Methode könnten die Unsicherheiten noch weiter reduziert werden. Die neuen „Standards“ sind bereits so präzise, dass andere bisher unbekannte Probleme bei der Kalibrierung von Monochromatoren zutage traten. Es ist auch interessant festzustellen, dass weltraumgestützte Röntgenteleskope bereits solche Linien hochgeladener Ionen aus kosmischen Quellen als Energiereferenzen verwenden. Das vorliegende Experiment hat nun die zuvor gröbste Unstimmigkeit bei interstellarem Sauerstoff beseitigt. In Zukunft wird es dringend benötigte exakte Röntgenenergiereferenzen nicht nur für die Astrophysik, sondern auch für die Forschung an Synchrotrons bieten, um den ständig wachsenden Anforderungen an die Kalibrierung bei vielen Anwendungen gerecht zu werden.

Wissenschaftliche Ansprechpartner:

PD Dr. José Crespo López-Urrutia
Max-Planck-Institut für Kernphysik
Tel.: +49 6221 516-521
E-Mail: jose.crespo@mpi-hd.mpg.de

Dr. Sven Bernitt
Helmholtz-Institut Jena und MPI für Kernphysik
Tel.: +49 6221 516-432
E-Mail: sven.bernitt@mpi-hd.mpg.de

Steffen Kühn
Max-Planck-Institut für Kernphysik
Tel.: +49 6221 516-432
E-Mail: steffen.kuehn@mpi-hd.mpg.de

Maurice A. Leutenegger
NASA Goddard Space Flight Center
E-Mail: maurice.a.leutenegger@nasa.gov

Originalpublikation:

High-Precision Determination of Oxygen Kα Transition Energy Excludes Incongruent Motion of Interstellar Oxygen, M. A. Leutenegger et al., Phys. Rev. Lett. 125, 243001 (2020), DOI: 10.1103/PhysRevLett.125.243001

https://www.mpi-hd.mpg.de/mpi/de/nachrichten/nachricht/nicht-mehr-schneller-als-die-galaxis-erlaubt

Media Contact

Dr. Gertrud Hönes Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…