Erstmals Quantenwelle im Heliumdimer gefilmt

Professor Reinhard Dörner (left) and Dr Maksim Kunitzki in front of the COLTRIMS reaction microscope at Goethe University, which was used to observe the quantum wave. (Photo: Goethe University Frankfurt)

Ein internationales Wissenschaftsteam der Goethe-Universität Frankfurt und der University of Oklahoma hat erstmals Effekte der Quantenphysik an einem auseinanderbrechenden Heliumdimer gefilmt. Der Film zeigt die Überlagerung von Wellen zweier Ereignisse, die mit unterschiedlicher Wahrscheinlichkeit gleichzeitig auftreten: Der Fortbestand und das Auseinanderbrechen des Heliumdimers. Die Methode könnte künftig erlauben, das Entstehen und den Zerfall quantenphysikalischer Efimov-Systeme experimentell zu verfolgen. (Nature Physics, DOI 10.1038/s41567-020-01081-3)

Wer sich in die Welt der Quantenphysik begibt, muss sich auf Einiges gefasst machen, was in der Alltagswelt unbekannt ist: Edelgase gehen Bindungen ein, Atome verhalten sich gleichzeitig wie Teilchen und wie Wellen, und Ereignisse, die eigentlich einander ausschließen, lassen sich gleichzeitig beobachten.

Reinhard Dörner und sein Team beschäftigen sich in der Quantenwelt mit Molekülen, die es klassischerweise gar nicht geben dürfte: Zweierverbindungen von Helium, sogenannte Heliumdimere. Denn Helium wird ja gerade deshalb zu den Edelgasen gezählt, weil es eigentlich keine Verbindungen eingeht. Wenn man das Gas jedoch auf nur 10 Grad über dem absoluten Nullpunkt von minus 273 Grad Celsius abkühlt und dann durch eine kleine Düse in eine Vakuumkammer strömen lässt, wodurch es noch kälter wird, dann bilden sich – ganz selten – solche Heliumdimere. Es sind sicher die am schwächsten gebundenen Moleküle im Universum, und entsprechend weit sind die beiden Atome im Molekül voneinander entfernt. Während eine chemische Bindung gewöhnlicherweise rund 1 Ångström misst (0,1 Nanometer), sind es beim Heliumdimer im Mittel mehr als 50 Mal so viel, 52 Ångström.

Solche Heliumdimere haben die Frankfurter Wissenschaftler mit einem extrem starken Laserblitz bestrahlt und dadurch die Bindung zwischen den beiden Heliumatomen minimal verdreht – was ausreichte, um die beiden Atome auseinanderfliegen zu lassen. Daraufhin konnten die Wissenschaftler das wegfliegende Heliumatom erstmals als Welle sehen und in einem Film aufzeichnen.

Der Quantenphysik zufolge verhalten sich Objekte gleichzeitig wie ein Teilchen und eine Welle, was der Laie vielleicht von den Lichtteilchen (Photonen) her kennt, die sich einerseits wie Wellen überlagen und damit verstärken oder auslöschen können (Interferenz), andererseits aber als „Sonnenwind“ zum Beispiel Raumsonden über deren Sonnensegel antreiben können.

Dass die Forscher das wegfliegende Heliumatom im Frankfurter Laser-Experiment als eine Welle überhaupt beobachten und filmen konnten, lag daran, dass das Heliumatom nur mit einer gewissen Wahrscheinlichkeit wegflog: Mit 98-prozentiger Wahrscheinlichkeit war es noch an seinen zweiten Heliumpartner gebunden, mit 2-prozentiger Wahrscheinlichkeit flog es weg. Diese beiden Heliumatom-Wellen – Vorsicht: Quantenphysik! – überlagerten sich, ihre Interferenz ließ sich messen.

Vorstellen kann man sich das nicht, aber die Vermessung solcher „Quantenwellen“ lässt sich ausdehnen auf Quantensysteme mit mehreren Partnern wie das Heliumtrimer aus drei Helium-Atomen. Das Heliumtrimer ist interessant, da es einen exotischen sogenannten Efimovzustand bilden kann, sagt Maksim Kunitski, Erstautor der Studie: „Solche Drei-Teilchen-Systeme wurden 1970 durch den russischen Theoretiker Vitaly Efimov vorhergesagt und zunächst an Cäsiumatomen nachgewiesen. Vor fünf Jahren haben wir erstmals den Efimovzustand im Heliumtrimer entdeckt. Unsere jetzt entwickelte Methode der Laserpuls-Bestrahlung könnte es uns in Zukunft erlauben, die Entstehung und den Zerfall von Efimov-Systemen zu beobachten und so quantenphysikalische Systeme besser verstehen zu können, die experimentell nur schwer zugänglich sind.“

Bilder zum Download:

http://www.uni-frankfurt.de/95834340
Bildtext: Dr. Maksim Kunitski am COLTRIMS-Reaktionsmikroskop an der Goethe-Universität Frankfurt, mit dessen Hilfe die „Quantenwelle“ beobachtet werden konnte. (Foto: Uwe Dettmar für Goethe-Universität)

http://www.uni-frankfurt.de/95834284
Bildtext: Prof. Reinhard Dörner (links) und Dr. Maksim Kunitzki vor dem COLTRIMS-Reaktionsmikroskop an der Goethe-Universität Frankfurt, mit dessen Hilfe die „Quantenwelle“ beobachtet werden konnte. (Foto: Goethe-Universität Frankfurt)

Video: https://static-content.springer.com/esm/art%3A10.1038%2Fs41567-020-01081-3/Media…

Wissenschaftliche Ansprechpartner:

Prof. Dr. Reinhard Dörner
Institut für Kernphysik
Tel. +49 (0)69 798-47003
doerner@atom.uni-frankfurt.de
https://www.atom.uni-frankfurt.de/

Originalpublikation:

Maksim Kunitski, Qingze Guan, Holger Maschkiwitz, Jörg Hahnenbruch, Sebastian Eckart, Stefan Zeller, Anton Kalinin, Markus Schöffler, Lothar Ph. H. Schmidt, Till Jahnke, Dörte Blume, Reinhard Dörner: Ultrafast manipulation of the weakly bound helium dimer. In: Nature Physics, https://doi.org/10.1038/s41567-020-01081-3

Media Contact

Dr. Markus Bernards Public Relations und Kommunikation
Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…