Spontane Ströme im Supraleiter
Neue Myonen-Spin-Rotations-Experimente beweisen spontane elektrische Ströme in Supraleitern.
Supraleitung – das ist Stromfluss ohne elektrischen Widerstand. Dieses Quantenphänomen weckt den Forschergeist vieler theoretischer und experimenteller Physiker, die daran arbeiten, die Gesetzmäßigkeiten dahinter zu entdecken und zu erklären. Die intensive Forschung an Supraleitern wird aber auch von der Möglichkeit neuer Anwendungen in der Energie- und Antriebstechnik getrieben. Besonderes Interesse zieht dabei das Material Strontium-Ruthenat auf sich, das bereits seit über 25 Jahren weltweit intensiv erforscht wird.
In dieser Verbindung geht Supraleitung einher mit spontanen Ringströmen, die anders als normale Ströme in Metalldrähten oder Supraströme in konventionellen Supraleitern als Eigenschaft des Grundzustands auftreten – vergleichbar mit der Elektronenbewegung in Atomorbitalen, im Supraleiter allerdings verursacht durch kollektive Bewegung vieler Elektronen. Da diese ganz besondere Art der Supraleitung mit spontanen Strömen auch für Quantencomputing relevant ist, könnte Strontium-Ruthenat auch für zukünftige Anwendungen der Supraleitung bedeutsam sein.
In einer soeben im Fachmagazin nature physics erschienenen Arbeit wurden subatomare Teilchen, sogenannte Myonen als Sonde verwendet, um diese subtilen elektrischen Ströme in supraleitendem Strontium-Ruthenat anhand der resultierenden Magnetfelder experimentell nachzuweisen. Dabei hat sich gezeigt, dass bei einachsigem Druck auf Strontium-Ruthenat die spontanen Ströme bei einer niedrigeren Temperatur einsetzen als die Supraleitung.
Mit anderen Worten, der Übergang spaltet sich in zwei Bereiche auf: erst Supraleitung, dann spontane Ströme. Eine solche Aufspaltung wurde bisher in keinem anderen Material nachgewiesen, was eine neue Sicht auf die bisherigen theoretischen Modelle erfordert. Diese Arbeit war nur möglich durch die technische Entwicklung einer einzigartigen einachsigen Dehnungsapparatur für Myonen-Spinrotationsexperimente.
An der Studie haben Wissenschaftler des IFW Dresden, der TU Dresden, dem Max-Planck-Institut für Chemische Physik fester Stoffe und des Paul-Scherrer-Instituts mitgewirkt.
Wissenschaftliche Ansprechpartner:
Dr. Vadim Grinenko
E-Mail: v.grinenko(at)ifw-dresden.de
Tel: +49 (0) 351 4659 502
Originalpublikation:
Grinenko, V., Ghosh, S., Sarkar, R. et al. Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress. Nat. Phys. (2021).
https://doi.org/10.1038/s41567-021-01182-7
Weitere Informationen:
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Wirkstoff-Forschung: Die Struktur von Nano-Genfähren entschlüsseln
LMU-Forschende haben untersucht, wie sich kationische Polymere beim Transport von RNA-Medikamenten auf molekularer Ebene organisieren. Kationische Polymere sind ein vielversprechendes Werkzeug für den Transport von RNA-Therapeutika oder RNA-Impfstoffen und werden…
Entwicklung klimaneutraler Baustoffe
…aus biogenen Materialien unter Einsatz phototropher Mikroorganismen. Das Fraunhofer-Institut FEP in Dresden bietet skalierbare Forschungs- und Entwicklungsmöglichkeiten, um technologische Innovationen auf neue Produktionsprozesse anzuwenden. Angesichts der steigenden Nachfrage nach klimaneutralen…
Optimiertes Notfallmanagement dank App
Wie die eGENA-App bei Notfällen in der Anästhesie hilft. Mit der eGENA-App hat die Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI) ein digitales Werkzeug geschaffen, das den Klinikalltag bei…