Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Forschende demonstrieren neuartigen, photonischen Interferenzeffekt, der den Weg zu großskaligen kontrollierbaren Quantensystemen bahnen könnte.
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten: Anahita Khodadad Kashi und Prof. Dr. Michael Kues vom Institut für Photonik und dem Exzellenzcluster PhoenixD der Leibniz Universität Hannover haben einen neuartigen Interferenzeffekt demonstriert.
Die Wissenschaftlerin und der Wissenschaftler haben damit nachgewiesen, dass neue farbcodierte photonische Netzwerke erschlossen und die Zahl der involvierten Photonen, d.h. Lichtteilchen, skaliert werden können. „Diese Entdeckung könnte neue Maßstäbe in der Quantenkommunikation, den Rechenoperationen von Quantencomputern sowie den Quantenmessverfahren ermöglichen und ist mit bestehender optischer Telekommunikationsinfrastruktur umsetzbar“, sagt Kues.
Das entscheidende Experiment glückte im neu eingerichteten „Quantum Photonics Laboratory (QPL)“ des Instituts für Photonik und des Hannoverschen Zentrums für Optische Technologien an der Leibniz Universität Hannover. Dort gelang es Anahita Khodadad Kashi unabhängig erzeugte Photonen mit unterschiedlichen Farben, d.h. Frequenzen, quantenmechanisch zu interferieren und einen sogenannten Hong-Ou-Mandel-Effekt nachzuweisen.
Die Hong-Ou-Mandel-Interferenz ist ein fundamentaler Effekt der Quantenoptik, der die Grundlage für viele Anwendungen der Quanteninformationsverarbeitung bildet – vom Quantencomputing bis zur Quantenmetrologie. Der Effekt beschreibt, wie sich zwei Photonen beim Auftreffen auf einem räumlichen Strahlteiler verhalten und erklärt das Phänomen der quantenmechanischen Interferenz.
Die Forschenden konnten nun mittels Telekommunikationskomponenten einen Frequenzstrahlteiler realisieren und den Hong-Ou-Mandel-Effekt erstmalig zwischen zwei unabhängig erzeugten Photonen in der Frequenzdomäne nachweisen. Im Gegensatz zu anderen Dimensionen, wie z.B. der Polarisation (Schwingungsebene des elektrischen Feldes) oder der Position (räumliche Lokalisation) eines Photons, ist die Frequenz weitaus weniger störanfällig.
„Zudem erlaubt unser Ansatz eine flexible Konfigurierbarkeit und einen Zugang zu hochdimensionalen Systemen, was in der Zukunft zu großskaligen kontrollierbaren Quantensystemen führen kann“, sagt Kues. Dieses Zwei-Photonen-Interferenz-Phänomen kann als Fundament für ein Quanteninternet, nicht-klassische Kommunikation und Quantencomputer dienen. Das heißt, die Ergebnisse könnten für frequenzbasierte Quantennetzwerke eingesetzt werden. Eine weitere Besonderheit an der jetzt gemachten Neuentdeckung: Diese Steigerung der Leistungsfähigkeit ließe sich mit bestehender Infrastruktur, also gängigen Glasfaseranschlüsse für die Anbindung an das Internet, verwenden. Die Nutzung von Quantentechnologien zu Hause könnte damit also theoretisch in Zukunft ermöglicht werden.
„Ich war sehr erfreut, dass unser Experiment den Hong-Ou-Mandel Effekt in der Frequenzdomäne nachweisen konnte“, sagt Khodadad Kashi. Die Forscherin ist nach ihrem Masterabschluss im Fach Elektroingenieurwesen mit dem Schwerpunkt Photonik an der Iran Universität für Wissenschaft und Technologie in Teheran im Jahr 2019 nach Hannover gewechselt. Seitdem verstärkt sie das siebenköpfige Team von Prof. Kues. Kues ist seit Frühjahr 2019 Professor an der Leibniz Universität Hannover und erforscht im Exzellenzcluster PhoenixD die Entwicklung von photonischen Quantentechnologien mittels der Mikro- und Nanophotonik. Künftig werden Kashi und Kues weiter zu dem Thema der spektralen Hong-Ou-Mandel-Interferenz forschen. „Ich möchte das jetzige Experiment erweitern, um den Effekt für Quanteninformationsverarbeitung ausnutzen zu können“, sagt Khodadad Kashi.
Die Forschungsergebnisse werden erstmals in der aktuellen Ausgabe von „Laser & Photonics Reviews“ vorgestellt. Die Resultate wurden im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Quantum Futur Projektes „PQuMAL“ (Photonische Quantenschaltkreise für das maschinelle Lernen) erzielt.
Der Exzellenzcluster PhoenixD
Der Exzellenzcluster PhoenixD der Leibniz Universität Hannover wird in den Jahren 2019 bis 2025 mit rund 52 Millionen Euro vom Bund und dem Land Niedersachsen über die Deutsche Forschungsgemeinschaft (DFG) gefördert. Kooperationseinrichtungen des Clusters sind die Technische Universität Braunschweig, das Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), die Physikalisch-Technische Bundesanstalt und das Laser Zentrum Hannover e.V. Mehr als 100 Wissenschaftlerinnen und Wissenschaftler aus den Fachdisziplinen Physik, Maschinenbau, Elektrotechnik, Chemie, Informatik und Mathematik forschen dort fachübergreifend. Der Cluster lotet die Möglichkeiten aus, die sich durch die Digitalisierung für neuartige optische Systeme sowie ihre Fertigung und Anwendung ergeben.
Mehr Informationen: www.phoenixd.uni-hannover.de
Originalartikel:
Anahita Khodadad Kashi, Michael Kues,
Spectral Hong-Ou-Mandel interference between independently generated single photons for scalable frequency-domain quantum processing,
Laser & Photonics Reviews, https://doi.org/10.1002/lpor.202000464
Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Prof. Dr. Michael Kues, Professor am Institut für Photonik und Mitglied im Exzellenzcluster PhoenixD, unter Telefon +49 511 762 3539 oder per E-Mail unter michael.kues@iop.uni-hannover.de gern zur Verfügung.
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…