Mit aktivem Lernen zu neuen Solarzellen

Visualization of the chemical space explored so far.
Credit: © Kunkel/FHI

Wissenschaftler*innen der Abteilung Theorie des Fritz-Haber-Instituts und der Technischen Universität München nutzen maschinelles Lernen bei der Suche nach geeigneten molekularen Materialien. Um mit der endlosen Vielfalt möglicher Materialien zurechtzukommen, bestimmt die Maschine selbst, welche Daten sie braucht.

Wie kann man sich auf etwas vorbereiten, ohne zu wissen, was es sein wird? Wissenschaftler*innen des Berliner Fritz-Haber-Institutes und der TU München haben sich dieser geradezu philosophischen Frage im Kontext des maschinellen Lernens gewidmet. Lernen ist eigentlich nichts anderes als das Zurückgreifen auf gemachte Erfahrungen.

Um mit einer neuen Situation umgehen zu können, muss man vorher halbwegs ähnliche Situationen erlebt haben. Beim maschinellen Lernen bedeutet dies, dass man dem Lernalgorithmus entsprechend viele Daten zur Verfügung stellt. Was aber, wenn es so unendlich viele Möglichkeiten gibt, dass es schlicht unmöglich ist, für alles ähnliche Daten zu generieren?

Genau dieses Problem ergibt sich sehr oft bei der schier endlosen Vielzahl von möglichen Molekülen. Organische Halbleiter bilden die Grundlage für so zukunftsträchtige Anwendungen wie tragbare Solarzellen oder zusammenrollbare Bildschirme. Hierfür müssen aber noch bessere organische Moleküle gefunden werden, aus denen sich diese Materialien zusammensetzen.

Für solche Suchaufgaben werden zunehmend Verfahren des maschinellen Lernens eingesetzt, die entweder mit gerechneten oder gemessenen Daten trainiert werden. Allerdings wird die Anzahl grundsätzlich möglicher organischer Moleküle auf ungefähr 1033 geschätzt – eine unfassbar große Zahl, die es unmöglich macht, einfach so Daten zu erzeugen, die diese riesige Vielfalt halbwegs abdecken. Zumal die allermeisten Möglichkeiten komplett unbrauchbar für organische Halbleiter sind und es sprichwörtlich gilt, die Nadel im Heuhaufen zu finden.

In ihrer in Nature Communications erschienenen Arbeit gehen das Team um Prof. Karsten Reuter, Direktor der Abteilung Theorie am Fritz-Haber-Institut, dieses Problem mit sogenanntem aktiven Lernen an. Anstatt mit vorhandenen Daten zu lernen, bestimmt dieser Lernalgorithmus sukzessive selbst, welche Daten er braucht.

So berechnen die Wissenschaftler*innen mit aufwändigen Computersimulationen erst einmal für eine Anzahl kleinerer Moleküle elektrische Leitfähigkeitsdaten, die eine Eignung in organischen Halbleitern und Solarzellen andeuten. Basierend auf diesen Daten überlegt sich der Algorithmus, ob kleinere Modifikationen der Moleküle entweder zu sehr guten Eigenschaften führen oder ob er sich unsicher über diese Eigenschaften ist, weil ihm ähnliche Daten fehlen. In beiden Fällen fordert er automatisch neue Simulationen an, verbessert sich anhand der so generierten Daten, überlegt sich neue Moleküle – und so geht dies kontinuierlich weiter.

In ihrer Arbeit zeigen die Wissenschaftler*innen, wie effizient auf diese Weise neue vielversprechende Moleküle gefunden werden, während sich der Algorithmus immer weiter durch die Weiten des molekularen Raums fräst, sogar genau jetzt in diesem Moment. Jede Woche schlägt er neue Moleküle, die die nächste Generation von Solarzellen einläuten könnten, und er wird immer besser.

Wissenschaftliche Ansprechpartner:

Prof. Karsten Reuter (reuter@fhi-berlin.mpg.de)

Originalpublikation:

DOI 10.1038/s41467-021-22611-4

https://www.fhi.mpg.de/

Media Contact

Agatha Frischmuth Presse- und Öffentlichkeitsarbeit
Fritz-Haber-Institut der Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…