Türme aus Enzymen helfen Mikroben beim Wachsen

Left: Cross-section through an anammox bacterium studied with electron microscopy. Some NXR strands are marked with a dashed rectangle. Right: Detailed structure of an NXR strand.
(c) Lea Dietrich, Kristian Parey, Thomas Barends

Wissenschaftler*innen dreier Max-Planck-Institute (MPI), des MPI für medizinische Forschung in Heidelberg, des MPI für Marine Mikrobiologie in Bremen und des MPI für Biophysik in Frankfurt und der Radboud Universität in Nimwegen ist es gelungen, die Struktur des Enzyms zu bestimmen, das einen großen Teil des Nitrats auf der Erde produziert. Mikroorganismen nutzen dieses Enzym, genannt NXR oder Nitrit-Oxidoreduktase, um giftiges Nitrit in Nitrat umzuwandeln. Sowohl Nitrit als auch Nitrat sind Formen von Stickstoff, die einen großen Einfluss auf unsere Umwelt haben. Die Ergebnisse wurden kürzlich im Fachjournal Nature Microbiology veröffentlicht.

Nitrat ist ein Nährstoff und für viele biologische Prozesse, zum Beispiel für das Wachstum der Pflanzen, ein wichtiges Molekül, das auf der Erde in großen Mengen (ca. 600 Milliarden Tonnen) vorkommt. Nahezu das gesamte in der Natur vorkommende Nitrat wird dabei durch die Oxidation von Nitrit durch die Nitrit-Oxidoreduktase (NXR) hergestellt. NXR ist somit ein entscheidendes Enzym im globalen biologischen Stickstoffkreislauf.

Es kommt zum einen in nitritoxidierenden Bakterien (NOB, einschließlich Comammox-Organismen) vor, die den Großteil des Nitrats in der Umwelt erzeugen, zum anderen in anaeroben ammoniumoxidierenden (Anammox) Bakterien. Anammox-Bakterien produzieren etwa die Hälfte des Distickstoffgases (N2) in unserer Atmosphäre. Die beteiligten Wissenschaftler*innen konnten nun die Struktur des Enzyms NXR aus Anammox-Bakterien aufklären.

Links: Ein NXR-Molekül. Rechts: Blick in das Innere von NXR. In der aktiven Tasche wird Nitrit in Nitrat umgewandelt; die dabei entstehenden Elektronen wandern entlang eine Art Stromleitung zur anderen Seite des NXR-Moleküls.
(c) Thomas Barends

Die Ergebnisse zeigen im Detail, wie NXR aufgebaut ist: Die einzelnen NXR-Einheiten stapeln sich wie Rückenwirbel turmartig übereinander, eine bisher nicht beobachtete Struktur. „Kryo-Elektronentomographie und helikale Rekonstruktion haben gezeigt, dass NXR diese ungewöhnliche tubuläre Strukturen, wie lange Fasern, in den Anammox-Zellen ausbildet“, so Kristian Parey vom Max-Planck-Institut für Biophysik. Ihre Funktion ist derzeit jedoch noch unklar. Eindeutiger ist die Struktur der einzelnen NXR-Moleküle: auf einer Seite gibt es eine sogenannte „aktive Tasche“, in der Nitrit gebunden und in Nitrat umgewandelt wird.

Dabei werden Elektronen freigesetzt und über eine Art elektrische Leitung zur anderen Seite des Moleküls transportiert. Dort können diese Elektronen von anderen Molekülen abgegriffen werden und für den Zellstoffwechsel genutzt werden. „NXR wird wegen seiner Bedeutung für den globalen Stickstoffkreislauf schon seit Jahrzehnten untersucht, aber wie NXR-Moleküle genau aussehen, wussten wir nicht“, sagt Thomas Barends, Gruppenleiter am MPI für medizinische Forschung in Heidelberg. „Jetzt kennen wir die detaillierte Struktur dieser Moleküle, was hilft, die Funktionsweise von NXR zu verstehen.“

„Bei Anammox-Bakterien war die Verbindung zwischen Nitrit-Oxidation und Nitrit-Reduktion bisher rätselhaft“, ergänzt Boran Kartal, Gruppenleiter am MPI für Marine Mikrobiologie in Bremen. „Diese Studie bringt uns einen großen Schritt weiter um zu verstehen, wie diese Mikroorganismen die Energieproduktion und Wachstum verbinden.“ Der Anammox-Prozess ist ein besonders spannender Teil des Stickstoff-Kreislaufs: Durch diesen Prozess werden Ni-trit oder Stickoxid und Ammonium direkt in molekularen Stickstoff (N2) umgewandelt, der immerhin 78% unserer Atmosphäre ausmacht. „Unsere detaillierte Untersuchung des molekularen Mechanismus der Nitritoxidation wird uns helfen, die Faktoren aufzudecken, die die Nitratproduktion in der Natur steuern, die ein wichtiger Schritt im ökologischen Nährstoffkreislauf ist“, so Kartal weiter.

„Aufgrund der großen Umweltbelastung durch Nitrit und Nitrat ist es wichtig zu wissen, wie Bakterien mit diesen Substanzen umgehen, um von den Prozessen zu lernen“, betont auch Barends. Wegen ihrer Eigenschaften werden Anammox-Bakterien zunehmend zur Reinigung von Abwässern in Klärwerken eingesetzt. Die Funktionsweise besser zu verstehen, könnte zu einem effizienteren Einsatz führen.

Wissenschaftliche Ansprechpartner:

Thomas M. R. Barends (MPI für medizinische Forschung, thomas.barends@mr.mpg.de), Boran Kartal (MPI für marine Mikrobiologie, bkartal@mpi-bremen.de), Kristian Parey (MPI für Biophysik, krparey@biophys.mpg.de

Originalpublikation:

https://www.nature.com/articles/s41564-021-00934-8

Weitere Informationen:

Englische Version der Pressemitteilung unter: https://www.mr.mpg.de/14164148/press_releases

https://www.mr.mpg.de/de

Media Contact

Elisabeth Fuhry Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für medizinische Forschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…