Wertschöpfungskette für industriell fertigbare Quantencomputer
Die (Rechen-)Leistung von Quantencomputern hängt stark von ihrem zentralen Hardwareelement ab: dem Qubit. Es existieren mehrere Ansätze zur Realisierung von Qubits, jedoch fehlen aktuell stabile, skalierbare Fertigungsmethoden, um einen Durchbruch in der industriellen Nutzung zu erreichen. Das kürzlich gestartete Projekt MATQu zielt darauf ab, das vorhandene europäische Know-how im Bereich der Materialien und Produktionsprozesse zu erweitern. So soll der europäischen Industrie der Weg zu festkörperbasierten Quantencomputern geebnet werden. Die beiden Fraunhofer-Institute IPMS und IAF bringen dabei ihre Expertise in der 300-mm-Fertigung und der Tieftemperaturmesstechnik ein.
Das im Juni 2021 gestartete Projekt MATQu, kurz für Materials for Quantum Computing, will eine europäische Forschungsinfrastruktur für fortschrittliche Computing-Technologien aufzubauen. Ziel ist, durch die enge Zusammenarbeit von führenden europäischen Forschungsinstituten, Industrie und Anwendungspartnern eine europäische Lieferkette für Materialien und Prozesse für Festkörper-Qubits zu etablieren. Mit MATQu soll ein europäisches Ökosystem geschaffen werden, um Festkörper-Qubits – wie beispielsweise supraleitende Josephson-Kontakte – in die Anwendung zu bringen. Josephson-Kontakte sind derzeit die ausgereifteste Festkörperplattform für stabile supraleitende Qubits. Schwerpunkt des Projekts sind neue Materialien sowie Prozessierungs- und Charakterisierungstechnologien für Quantencomputer-Hardware.
Qubits auf dem Weg zur Marktreife
Supraleitende Qubits gehören zu den vielversprechendsten Bauelementen, um einen Quantencomputer im großen Maßstab zu realisieren. Der Erfolg der Josephson-Kontakte kann auf ihre Designprinzipien zurückgeführt werden, die auf etablierten Produktions-prozessen beruhen. Ihre Leistungsfähigkeit hängt jedoch entscheidend von der Qualität der verwendeten Substrate und der Materialien sowie der Reproduzierbarkeit der bei der Herstellung angewandten Prozesse ab. Eine stabile und etablierte Wertschöpfungskette ist daher der Schlüssel zur Verbesserung dieser Parameter in der Zukunft. So ist das technische Hauptziel des Projekts MATQu die Verbesserung und der Transfer von Materi-alien und Technologien aus den Laboren in den Markt. Die Projektpartner verfügen über umfangreiche Infrastruktur und werden mit ihrer Expertise in den Bereichen Materialien, Prozessintegration und Forschung dazu beitragen, robuste und reproduzierbare Qubits herzustellen. Eine industrietaugliche Fabrikationsinfrastruktur wird es ermöglichen, Pro-zessparameter zu optimieren und die Leistung supraleitender Qubits systematisch zu verbessern.
Verringerung der Variabilität von Qubits
Qubits werden oft als eigenwillig beschrieben; zwischen ihnen wird eine große Variabili-tät gemessen. Um dies zu kontrollieren, sind komplexe Methoden zum »Tunen« (Einstellen) der Qubits erforderlich. Dies wiederum erhöht die Komplexität der Quantencompu-terarchitekturen im Vergleich zu traditionellen (von Neumann)-Computern. Dies ist auch einer der Hauptgründe für die derzeitigen Skalierungsgrenzen in der Anzahl der Qubits in heutigen Quantencomputern. MATQu zielt darauf ab, diese Variabilität zwischen den Qubit-Komponenten zu reduzieren. »Wir erwarten zwar in den nächsten 5 bis 10 Jahren nicht das gleiche Integrationsniveau wie bei klassischen Computerchips, aber wir werden sicherlich einen großen Schritt in Richtung Variabilitätsreduktion bei supraleitenden Qubits machen«, erklärt Prof. Rüdiger Quay, Projektkoordinator vom Fraunhofer IAF.
Silizium-Qubits aus dem Labor in die industrielle Fertigung bringen
Der Fokus des Fraunhofer IPMS im Projekt liegt darauf, die bestehenden Konzepte und Technologien aus dem Labor in die industrielle Fertigung zu bringen. Dabei beruft sich das Institut auf seine Expertise in der 300-mm-Fertigung, die bereits als Industriestandard für CMOS-Computing-Plattformen dient. »Im Projekt gewinnen wir neue Einblicke in die Material- und Prozesseinflüsse für den Herstellungsprozess von supraleitenden Qubits, insbesondere im Bereich der Abscheidung, Strukturierung und der Integration von supraleitenden Schichten. Durch neuartige Herstellungsprozesse und die Erprobung bei kryo-genen Temperaturen wollen wir so die Fertigung von Bauelementen für das Quantencomputing auf europäischer Ebene voranbringen«, erläutert Dr. Benjamin Lilienthal-Uhlig, Geschäftsfeldleiter Next Generation Computing am Fraunhofer IPMS. »Ein zweiter Schwerpunkt ist für uns, gemeinsam mit Industrie- und Forschungspartnern europäischen Mittelständlern und Startups Zugang zu modernsten Fertigungsanlagen und Know-how verschaffen, um die Reife der supraleitenden Qubit-Technologie deutlich zu steigern und das europäische Ökosystem der Quantentechnologie zu stärken«, sagt Lili-enthal-Uhlig abschließend.
Tieftemperaturmesstechnik zur Untersuchung der Variabilität
In dem Projekt MATQu bringt das Fraunhofer IAF seine Erfahrungen und Kenntnisse auf dem Gebiet der Tieftemperaturmesstechnik ein, insbesondere zur Untersuchung der Variabilität von supraleitenden Schichten. Das Freiburger Institut besitzt umfangreiche Geräte zur Charakterisierung von kryogenen Bauelemente, wie sie im Quantencomputing zum Einsatz kommen. Damit erhalten europäische Unternehmen, insbesondere KMUs und Start-ups, neben dem notwendigen Know-how auch Zugang zu modernsten Test- und Charakterisierungsgeräten und somit zu Schlüsselkomponenten für die Entwicklung von Quantencomputer-Hardware.
Über das Projekt »MATQu«
In Bezug auf Substrattechnologie, Prozesstechnologie und Werkzeuge bringt das Projekt MATQu die wichtigsten europäischen Akteure auf diesem Gebiet zusammen, darunter vier große Forschungseinrichtungen. Die 18 MATQu-Partner ergänzen sich in optimaler Weise über die gesamte Wertschöpfungskette hinweg, um einen wesentlichen Wettbewerbsvorteil zu schaffen, z. B. eine schnellere Markteinführung von Technologien und Materialien für bessere Josephson Junctions für das Quantencomputing. Das Projekt wird von der gemeinsamen Geschäftsstelle des Fraunhofer-Verbunds für Mikroelektronik und der Forschungsfabrik Mikroelektronik Deutschland sowie dem Fraunhofer IAF koordiniert.
Mehr Informationen erhalten Sie unter: www.matqu.eu
Dieses Projekt wird durch das ECSEL-Programm Joint Undertaking (JU) unter Fördernummer 101007322 gefördert. Das JU erhält Unterstützung durch das Forschungs- und Innovationsprogramm Horizon 2020 der Europäischen Union und durch Deutschland, Frankreich, Belgien, Österreich, Niederlande, Finnland, Israel.
Wissenschaftliche Ansprechpartner:
Dr. Benjamin Lilienthal-Uhlig, benjamin.uhlig@ipms.fraunhofer.de
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…