Hürdenlauf zum Wasserstoff
Doktorand entdeckt am LIKAT eine neue Art der H2O-Spaltung.
Es klingt einfach, und die Natur macht es uns vor: Grüne Pflanzen speichern Sonnenergie, indem sie – mittels Licht und Chloroplasten – Wasser in Wasserstoff und Sauerstoff spalten. Die Forschung reizt es, auf ähnliche Weise zum Wasserstoffgas (H2) zu gelangen, denn „grün“ produziert gilt es als Protagonist einer nachhaltigen Energie- und Grundstoffwirtschaft.
Jacob Schneidewind vom Rostocker Leibniz-Institut für Katalyse hat mit seiner Dissertation einen Weg dorthin gezeigt. Er deckte den Mechanismus einer neuen Art der Wasserspaltung auf, mit der die Photolyse kostengünstig möglich werden kann. Der Bericht darüber erschien im Fachmagazin ENERGY & ENVIRONMENTAL SCIENCE.
Grüner Wasserstoff lässt sich auf unterschiedliche Weise gewinnen. Technisch genutzt wird aktuell die Elektrolyse mittels Katalysator und Elektrizität, die von Wind oder Sonne stammt. Eleganter und womöglich kostengünstiger ist freilich die Photolyse, bei der das Sonnenlicht mithilfe eines Katalysators direkt die Wasserspaltung bewirkt – ohne Umweg über Strom aus Wind- oder Solaranlagen. Unter dem Stichwort „künstliche Photosynthese“ erkundet die Chemie derzeit intensiv diesen photokatalytischen Weg.
Was es braucht: Wasser, Lichtquelle, Katalysator
Vor 12 Jahren berichtete ein Team vom Weizmann-Institut, Israel, im SCIENCE-Magazin von einer chemischen Reaktion, bei der ein neuartiger Katalysator mit Hilfe von Licht Wasser spaltete. „Doch niemand verstand, auf welche Weise das geschah“, sagt Dr. Jacob Schneidewind. „Klar war nur, dass noch niemand diese Art der Wasserspaltung gesehen und beschrieben hatte. Sie unterscheidet sich auch komplett von der natürlichen Photosynthese.“
Hier gab es etwas grundsätzlich Neues über die Wasserspaltung zu lernen. Und einen neuen Weg zu erkunden, diese Vorgänge technisch zu nutzen. Drei Jahre studierte Jacob Schneidewind in seiner Promotion am LIKAT die Original-Reaktion der israelischen Kollegen mittels Wasser, einer Lichtquelle und dem Katalysator aus Ruthenium. Ziel war es, die Abläufe auf molekularer Ebene aufzuklären und die Prozesse am Rechner zu simulieren.
Vier Hürden für Photonen
Kurze Reminiszenz an den Bio-Unterricht in der Sekundarstufe: Bei der Photolyse in grünen Pflanzen entstehen aus jeweils zwei H2O-Molekülen ein Sauerstoff-Molekül (O2) sowie exakt vier Protonen des Wasserstoffs (H+) und vier Elektronen (e-). Jacob Schneidewind erläutert: „Die Energie für die Freisetzung der vier Elektronen stammt von ebenfalls vier absorbierten Lichtteilchen, den Photonen. Um genügend Photonen zu gewinnen, benutzt die Natur mehrere absorbierende Zentren.“
Man könne sich die Reaktion wie einen energetischen Hürdenlauf vorstellen, sagt Jacob Schneidewind. „Bis zum Ziel, also der Wasserspaltung, sind dann vier Hürden zu überwinden. Wird auch nur eine davon gerissen, misslingt die Photolyse – zumindest für diesen Molekülverband.“ Soweit der Ablauf in der Natur.
Original lässt Fragen offen
Im Labor am Weizmann-Institut erfolgte die Photolyse aber nicht an mehreren absorbierenden Zentren, sondern nur an einem einzigen Punkt. „Das erschien seltsam“, sagt Dr. Schneidewind. „Dass ein katalytisches Zentrum allein vier Photonen absorbieren würde, ist extrem unwahrscheinlich.“ Ebenso wenig würde die Energie eines einzelnen Photons ausreichen, um alle vier Hürden zu überspringen. Dafür gab es keine sinnvolle Erklärung.
Als Doktorand arbeitete sich Jacob Schneidewind in die Quantenchemie und die Kinetik chemischer Reaktionen ein, mit deren Hilfe er Reaktionen am Rechner modellieren konnte. Im Labor baute er das israelische Experiment mit wechselnden Lichtquellen nach, vom kurzwelligen, energiereichen blauen Licht bis zum energieschwachen Rotbereich. Kollegen an der Universität Rostock übernahmen die Analysen mittels Hochgeschwindigkeits-Spektroskopie.
Die Lösung: zwei Hürden reichen aus
„Es hat uns alle überrascht zu sehen, was da im System geschieht“, sagt Jacob Schneidewind. Tatsächlich kommt der photokatalytische Weg zum Wasserstoff mit zwei Photonen aus statt mit üblicherweise vier. Und sowohl die Absorption der Photonen als auch die eigentliche Spaltungsreaktion laufen an einem einzigen Zentrum ab, welches aus einem Paar von Ruthenium-Atomen besteht. „Wenn das erste Photon seine Hürde genommen hat, entsteht eine neue Verbindung, die das zweite Photon absorbiert. Und diese benötigt für die zweite Hürde sogar weniger Energie als für die erste Hürde nötig war.“ Somit lässt sich eine größere Bandbreite des Lichts nutzen, was die Effizienz deutlich verbessern kann.
Strukturell scheint alles aufgeklärt. Was folgt technisch daraus? „Man könnte z.B. durchsichtige Plastikschläuche mit einer Suspension oder Lösung aus Wasser und Katalysator füllen und großflächig der Sonne aussetzen“, sagt Dr. Schneidewind. Dieser Ansatz wäre, mit dem richtigen Katalysator, drei- bis viermal kostengünstiger als die Kombination von Solarzellen und Elektrolyseur. Einen geeigneten Katalysator dafür plant Jacob Schneidewind ab Herbst mit einer eigenen Nachwuchsgruppe an der RWTH Aachen zu entwickeln, wohin er nach seiner Promotion gewechselt ist.
Nachhaltige Energie-Konzepte gehen u.a. davon aus, künftig grünen Wasserstoff in sonnenreichen Regionen zu produzieren und nach Europa zu importieren. Das Wissen aus dem LIKAT wird helfen entsprechende Technologien zu entwickeln.
Wissenschaftliche Ansprechpartner:
Dr. Jacob Schneidewind, E-Mail: Jacob.Schneidewind@catalysis.de, Telefon: 0151 / 22 364 538
Originalpublikation:
DOI: 10.1039/d1ee01053k
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Wirksamkeit von Metformin zur primären Krebsprävention
Eine Studie der Deutschen Krebshilfe bietet Menschen mit Li-Fraumeni-Syndrom neue präventive Strategien: Forschende der Medizinischen Hochschule Hannover (MHH) untersuchen in einer neuen Wirksamkeitsstudie erstmals, ob das krebsfreie Überleben bei LFS-Betroffenen…
Innovative Algorithmen für eine nachhaltige und flexible KI
Die Entwicklung und der Einsatz künstlicher Intelligenz verschlingen jede Menge Ressourcen. Das neue BMBF-geförderte Forschungsprojekt COMFORT will das ändern. Verantwortlich dafür ist der Würzburger Mathematiker Leon Bungert. Keine Frage: Das…
Neue Rezeptur für Gleistragplatten
Mit einem Material aus recycelten Kunststoffen und alten Rotorblättern soll die betonlastige Eisenbahninfrastruktur in Deutschland modernisiert werden. Sie unterhalten sich über Mischungen, Mischungsverhältnisse und Zusatzstoffe und es klingt, als seien…