Langsame Version des Glutamat-Rezeptors AMPA entdeckt
Der Glutamat-Rezeptor AMPA war bislang für seine blitzschnelle Erregungsübertragung bekannt. Umso überraschender die Ergebnisse die Forscher vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin jetzt vorgelegt haben: AMPA-Rezeptoren können auch außerordentlich langsam sein. Die Entdeckung des neuen Rezeptortyps stellt die synaptische Signalübertragung in ein völlig neues Licht. Die bahnbrechenden Erkenntnisse sind kürzlich im Fachjournal „Cell Reports“ erschienen.
Der Glutamat-Rezeptor AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) sorgt dafür, dass Neurotransmitter mit enormer Geschwindigkeit von Gehirnzelle zu Gehirnzelle übertragen werden. Dass der Rezeptor diese lebenswichtige Aufgabe in ein paar Millisekunden erledigt und damit schneller als alle anderen Glutamat-Rezeptoren ist, galt als gesichert.
Nun sieht es so aus, als müssten die Lehrbücher umgeschrieben werden. Wissenschaftler*innen vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin haben an Mäusegehirnen entdeckt, dass es auch außerordentlich langsame AMPA-Rezeptoren gibt. Diese bleiben nach Stimulation 500 Millisekunden aktiv – sind also etwa 100 Mal langsamer als das „Original“. Dabei handelt es sich nicht um Einzelfälle: Etwa zwei Drittel aller Pyramidenzellen des Hippocampus exprimieren langsame AMPA-Rezeptoren.
Zwei neue AMPA-Rezeptoren identifiziert
„Tatsächlich sind unsere Ergebnisse für die Biophysik und die Neurowissenschaften eine kleine Revolution“, sagt Heisenberg Professor Dr. Andrew Plested, Leiter der Gruppe „Molecular Neuroscience and Biophysics“ am FMP und Mitglied des Exzellenzclusters „NeuroCure“. „Denn erstmals konnten wir nachweisen, dass es neben den blitzschnellen AMPA-Rezeptoren noch mindestens zwei weitere Typen gibt, die in einem sehr viel langsameren Modus arbeiten.“ Dies sei zwar schon vermutet worden, aber noch nie an Gehirngewebe so detailliert gezeigt worden.
AMPA-Rezeptoren sind für unsere Gehirnfunktionen überlebenswichtig. Unklar ist noch, welche Bedeutung die jetzt entdeckten langsamen AMPA-Rezeptoren mit ihrem Synapsenpotenzial von über 100 Millisekunden für kognitive Prozessen wie etwa Denken, Sprechen, Rechnen oder Erinnern haben. Diese spannende Frage wird im Weiteren zu erforschen sein.
Noch sind sich die Forschenden nicht ganz sicher, ob AMPA-Rezeptoren unterschiedliche Eigenschaften annehmen, indem sie zwischen einem schnellen und langsamen Modus hin und her wechseln können –oder ob es sich um grundverschiedene Typen handelt. Die Forscher vermuten, dass es sowohl schnelle, langsame als auch multifunktionale AMPA-Rezeptoren gibt.
„Aufgrund unserer Daten gehen wir momentan von mehreren Rezeptorttypen aus, was die Funktion des Glutamat-Rezeptors in einem völlig neuen Licht erscheinen lässt“, sagt Dr. Niccolò Pampaloni, Erstautor der in „Cell-Reports“ publizierten Studie.
Instabiler Prozess mit gefährlichen Aspekten
In diesem Zusammenhang hat das Forscherteam noch eine weitere spektakuläre Entdeckung gemacht: Nach der gängigen Lehrmeinung wird die Aktivität des AMPA-Rezeptors ausschließlich von der signalgebenden prä-synaptische Zelle bestimmt, und die post-synaptische Zelle ist lediglich ein passiver Empfänger. Die Forscher fanden jedoch belastbare Hinweise, dass langsame AMPA-Rezeptoren in der post-synaptischen Zelle die Dauer der synaptischen Signalübertragung maßgeblich beeinflussen. Hierfür nutzen sie offenbar Hilfsproteine.
Doch das habe auch gefährliche Aspekte, meint Niccolò Pampaloni, der durch ein EMBO-Stipendium gefördert wird. „Wir haben es hier mit einem sehr instabilen Feedbackprozess zu tun, der irgendwie falsch wirkt und zum Beispiel mit Epilepsie in Verbindung stehen könnte. Wir wissen auch nicht, was passiert wenn dieser Prozess einmal außer Kontrolle gerät – etwa durch einen Unfall, einen Schlaganfall oder ein anderes Event, bei dem viel Glutamat ausgeschüttet wird.“
Neues Kapitel in den Neurowissenschaften aufgeschlagen
Grundlegende Fragen hinsichtlich Hirnfunktion und Pathologien können erst in einem übernächsten Schritt beantwortet werden. Zunächst einmal muss geklärt werden, ob auch der Mensch tatsächlich die neu entdeckten AMPA-Rezeptoren besitzt. Diese entscheidende Fragestellung wollen die Forscher*innen in Kürze an humanen Gewebeproben untersuchen. Eine Kooperation mit der Charité-Universitätsmedizin über das Exzellenzcluster „NeuroCure“ ist bereits angebahnt.
Nach den aktuellen Daten geht das Berliner Forscherteam davon aus, dass langsame AMPA-Rezeptoren im menschlichen Gehirn weit verbreitet sind, und zwar über den Hippocampus hinaus. Biophysiker Plested: „Wir hoffen, dass wir mit unserer Entdeckung ein neues Kapitel aufgeschlagen haben, mit dem sich nun Grundlagenforscher*innen und Neurowissenschaftler*innen ausgiebig beschäftigen werden.“
Wissenschaftliche Ansprechpartner:
Prof. Dr. Andrew Plested
Molecular Neuroscience and Biophysics
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Cellular Biophysics, Humboldt-Universtät zu Berlin
NeuroCure Cluster of Excellence
andrew.plested@hu-berlin.de
Tel.: +49 (0) 30 94793-245
www.leibniz-fmp.de/de/plested
Originalpublikation:
Niccolò P. Pampaloni, Irene Riva, Anna L. Carbone, Andrew J.R. Plested. Slow AMPA receptors in hippocampal principal cells. Cell Reports, DOI: 10.1016/j.celrep.2021.109496
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…