Verwandlung im Teilchenzoo

Letzte Lötarbeiten von Mathias Wagner (unten) am gasgefüllten, mikrostrukturierten Spurdetektor: Das Team von Prof. Dr. Bernhard Ketzer (oben) entwickelte das Messinstrument.
Foto: Volker Lannert/Uni Bonn

Eine internationale Studie unter Federführung der Universität Bonn hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden. Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können. Der Mechanismus gibt auch neue Einblicke in ein Rätsel: Protonen, Neutronen und viele andere Teilchen sind viel schwerer, als man erwarten würde. Ursache sind Eigenheiten der starken Wechselwirkung, die die Quarks zusammenhält. Die Dreiecks-Singularität könnte dabei helfen, diese Eigenschaften besser zu verstehen. Die Publikation ist nun in den Physical Review Letters erschienen.

Die Forschenden analysierten in ihrer Studie Daten aus dem COMPASS-Experiment am europäischen Kernforschungszentrum CERN in Genf. Darin werden bestimmte Teilchen, Pionen genannt, auf extrem hohe Geschwindigkeiten gebracht und auf Wasserstoff-Atome geschossen.

Pionen bestehen aus zwei Bausteinen, einem Quark und einem Anti-Quark. Diese werden durch die starke Wechselwirkung zusammengehalten, ähnlich wie zwei Magnete, deren Pole sich anziehen. Wenn man Magnete voneinander entfernt, nimmt die Anziehung zwischen ihnen sukzessive ab. Bei der starken Wechselwirkung ist das anders: Sie steigt mit zunehmendem Abstand an, ähnlich wie die Zugkraft eines sich dehnenden Gummibands.

Der Aufprall des Pions auf den Wasserstoff-Kern ist jedoch so stark, dass dieses Gummiband reißt. Die in ihm gespeicherte „Dehnungs-Energie“ wird dabei auf einen Schlag frei. „Diese wird in Materie umgewandelt, wodurch neue Teilchen entstehen“, erklärt Prof. Dr. Bernhard Ketzer vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. „Mit derartigen Experimenten können wir also wichtige Informationen über die starke Wechselwirkung gewinnen.“

Ungewöhnliches Signal

Im Jahr 2015 registrierten die COMPASS-Detektoren nach einem solchen Crashtest ein ungewöhnliches Signal. Es schien darauf hinzudeuten, dass bei dem Zusammenprall für wenige Sekundenbruchteile ein exotisches neues Teilchen entstanden war. „Normalerweise bestehen Teilchen entweder aus drei Quarks — dazu zählen etwa die Protonen und Neutronen — oder aber wie die Pionen aus einem Quark und einem Antiquark“, sagt Ketzer. „Dieser neue kurzlebige Zwischenzustand schien dagegen aus vier Quarks zu bestehen.“

Zusammen mit seiner Arbeitsgruppe und Kollegen der TU München hat der Physiker die Daten nun einer neuen Analyse unterzogen. „Dabei konnten wir zeigen, dass sich das Signal auch anders erklären lässt — nämlich durch die besagte Dreiecks-Singularität“, betont er. Dieser Mechanismus wurde bereits in den 1950er Jahren vom russischen Physiker Lew Dawidowitsch Landau postuliert, bislang aber noch nicht direkt nachgewiesen.

Demnach entstand bei der Teilchenkollision keineswegs ein Vierer-Quark, sondern ein ganz normales Quark-Antiquark-Zwischenprodukt. Dieses zerfiel aber direkt wieder, allerdings auf ungewöhnliche Weise: „Dabei tauschten die beteiligten Partikel Quarks aus und änderten ihre Identität“, sagt Ketzer, der auch Mitglied im Transdisziplinären Forschungsbereich „Bausteine der Materie und fundamentale Wechselwirkungen“ (TRA Matter) ist. „Das resultierende Signal sieht dann exakt so aus wie das von einem Vierer-Quark mit einer anderen Masse.“ Es ist das erste Mal, dass eine solche Dreiecks-Singularität direkt als vermeintliches neues Teilchen in diesem Massenbereich nachgewiesen wurde. Interessant ist das Ergebnis auch deshalb, weil es neue Einblicke in die Natur der starken Wechselwirkung erlaubt.

Nur ein kleiner Teil der Proton-Masse ist durch Higgs-Mechanismus erklärbar

Protonen, Neutronen, Pionen und andere Teilchen (die sogenannten Hadronen) haben eine Masse. Sie wird ihnen durch den sogenannten Higgs-Mechanismus verliehen, aber offensichtlich nicht ausschließlich: Ein Proton ist rund 20 Mal massereicher, als man es allein mit dem Higgs-Mechanismus erklären kann. „Der Großteil der Masse der Hadronen kommt durch die starke Wechselwirkung zustande“, erklärt Ketzer. „Wie genau die Massen der Hadronen zustandekommen, ist allerdings noch nicht geklärt. Unsere Daten helfen uns, die Eigenschaften der starken Wechselwirkung besser zu verstehen – und vielleicht auch, auf welche Weise sie zur Masse von Teilchen beiträgt.“

Förderung:

Die Studie wurde unter anderem aus Mitteln des BMBF, des DFG-Exzellenzclusters „Ursprung und Struktur des Universums“, der EU (im Rahmen ihres 7. Forschungsrahmenprogramms) sowie von Fördereinrichtungen in Tschechien, Frankreich, Indien, Israel, Italien, Japan, Polen, Portugal, Russland, Taiwan und den USA finanziert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Bernhard Ketzer
Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn
Tel.: +49 228/73-2539 (Büro) oder +49 228/73-2203 (Sekretariat)
E-Mail: Bernhard.Ketzer@uni-bonn.de

Originalpublikation:

G. D. Alexeev u.a.: Triangle singularity as the origin of the a1(1420); Physical Review Letters 127, 082501 (2021); DOI: 10.1103/PhysRevLett.127.082501

http://www.uni-bonn.de/

Media Contact

Johannes Seiler Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…