Neue „Schlüssel“ zum Ausschalten von Krebszellen
Hybrid-Wirkstoffe „Borinostats“ nutzen Bor statt Kohlenstoff.
Als der Chemiker Dr. Christoph Selg fast täglich zwischen zwei unterschiedlichen Laboren an der Universität Leipzig pendelte, verknüpfte er auf diese Weise auch zwei Wissenschaftsdisziplinen. Indem er und seine Kolleginnen und Kollegen die Pharmazie und die Anorganische Chemie zusammenbrachten, ist es ihnen gelungen, eine Gruppe vielversprechender potentieller Wirkstoffe für die Krebstherapie zu entwickeln: die sogenannten „Borinostats“.
Zahlreiche Krebstherapeutika beruhen auf der gezielten Bekämpfung kranken Gewebes, ohne dabei gesundes Gewebe in Mitleidenschaft zu ziehen. Eine probate Methode, um zwischen Gut und Böse zu unterscheiden, ist die gezielte Blockade von Enzymen, die in Krebszellen übermäßig stark produziert werden. Der Stoffwechsel der Zelle wird dadurch so sehr gestört, dass der kontrollierte Zelltod eingeleitet wird und die Krebszelle schließlich abstirbt, wohingegen gesunde Zellen weitgehend unbehelligt bleiben.
Eine Enzymfamilie, die die Wissenschaftlerinnen und Wissenschaftler gezielt blockieren können möchten, ist die der 18 Histondeacetylasen (HDACs), denn sie spielt bei einigen Krebserkrankungen, aber auch bei HIV, Entzündungs- und Immunerkrankungen, sowie bei neurodegenerativen und parasitären Erkrankungen eine zentrale Rolle. Die Forscherinnen und Forscher arbeiten daran, nach dem Schlüssel-Schloss-Prinzip Wirkstoffe zu entwickeln, die exklusiv die Enzymtasche des gewünschten Enzyms blockieren, ohne aber die Funktionen anderer Enzyme zu beeinträchtigen. Die gesuchten „Schlüssel“ funktionieren als sogenannte Inhibitoren und werden im Fall der Histondeacetylasen als HDACi bezeichnet.
Ziel: Anorganische Bausteine in die Entwicklung der Wirkstoffe integrieren
Am Institut für Pharmazie der Universität Leipzig forschte die Arbeitsgruppe um Prof. Dr. Finn K. Hansen (bis Sommer 2020 Juniorprofessor für Pharmazeutische und Medizinische Chemie an der Universität Leipzig; seit Kurzem Professor für Pharmazeutische Chemie an der Universität Bonn) seit einigen Jahren an solchen HDACi. Üblicherweise greifen Forscherinnen und Forscher dabei auf die hauptsächlich Kohlenstoff-basierten Synthesebausteine der Organischen Chemie zurück. Das Problem: Die Auswahl an möglichen Bausteinen ist begrenzt. Um die Bibliothek zu erweitern, schloss sich Hansens Gruppe deshalb mit der Arbeitsgruppe von Prof. Dr. Dr. h.c. Evamarie Hey-Hawkins am Institut für Anorganische Chemie zusammen, die das Knowhow und die Infrastruktur zur Verfügung stellte, um nun auch anorganische Bor-basierte Bausteine in die Entwicklung von HDACi zu integrieren.
Nachwuchswissenschaftler Dr. Christoph Selg setzte die Synthesearbeiten um und pendelte dafür für einige Monate zwischen den Laboren der beiden Arbeitsgruppen. „Bor-Verbindungen sind oft sehr luft- und wasserempfindlich, deshalb mussten die Synthesen der anorganischen Bausteine unter einer Schutzgas-Atmosphäre in speziellen Apparaturen durchgeführt werden“, erklärt er. „Die Labore der Hey-Hawkins-Gruppe sind auf diese sogenannte Schlenk-Technik spezialisiert. Sicher verpackt wurden die Verbindungen dann zur Synthese der fertigen Wirkstoffe ins Institut für Wirkstoffentwicklung (IWE) transportiert.“
Das Ergebnis: Die neuen Wirkstoff-Moleküle bestanden nun zur einen Hälfte aus herkömmlichen organischen HDACi-Wirkstoffgerüsten und zur anderen Hälfte aus anorganischen Bor-Clustern (Carboranen). Die Leipziger Forscherinnen und Forscher tauften sie „Borinostats“.
Wirksam und präzise steuerbar
In umfangreichen in-vitro-Tests am Institut für Wirkstoffentwicklung der Universität Leipzig, am Pharmazeutischen Institut der Universität Bonn und an der Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf stellte sich heraus, dass die neuen Verbindungen nicht nur sehr wirksam waren, sondern sich auch besonders präzise auf das Enzym Histondeacetylase 6 steuern ließen, das bei der Behandlung von Krebs besonders relevant ist.
„Mit diesem neuen Konzept stehen nun ‚Schlüssel und Generalschlüssel‘ für HDACs zur Verfügung. Unsere ‚Borinostats‘ stellen ein vielversprechendes Fundament für weitere anorganisch-pharmazeutische kooperative Forschungsansätze dar“, so Selg. Die Ergebnisse zu den neuen Wirkstoffen wurden kürzlich in der renommierten Fachzeitschrift Chemical Science publiziert.
Wissenschaftliche Ansprechpartner:
Dr. Christoph Selg
Institut für Organische Chemie
Telefon: +49 341 97-36136
E-Mail: christoph.selg@uni-leipzig.de
Web: http://www.chemie.uni-leipzig.de/institut-fuer-organische-chemie
Originalpublikation:
Originaltitel der Veröffentlichung in Chemical Science:
“Borinostats: solid-phase synthesis of carborane-capped histone deacetylase inhibitors with a tailor-made selectivity profile”, www.doi.org/10.1039/d1sc02268g
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…