Neue Sensoren für Detektion von Molekülen

Die neuartigen Sensoren schließen eine bestehende Lücke in der Sensorik.
Bild: Sandeep Kumar

Veröffentlichung in „Advanced Materials“: Hohe Sensitivität, vielseitige Einsatzmöglichkeiten.

Forschenden von TU Darmstadt und Karlsruher Institut für Technologie ist es gelungen, einen neuartigen Sensor für Moleküle in der Gasphase zu entwickeln. Ihre Ergebnisse publizierten sie jüngst in der Zeitschrift „Advanced Materials“.

Ob in Smartphones, Autos, Industrieanlagen oder Forschungslaboren, Sensoren sind bereits heute allgegenwärtig und bilden die Basis unserer modernen Welt. Für den technologischen Fortschritt ist deshalb die Weiter- und Neuentwicklung von selektiven und sensitiven Sensoren von großer
Bedeutung. Forscherinnen und Forschern ist es nun gelungen einen neuartigen Sensor für Moleküle in der Gasphase zu entwickeln, wie sie in der Fachzeitschrift „Advanced Materials“ berichten.

Das Funktionsprinzip dieser neuen Klasse von Sensoren beruht auf der Kombination von sensitiven Graphen-Transistoren mit maßgeschneiderten metall-organischen Beschichtungen. Diese Beschichtungen können so gestaltet werden, dass sie auf eine Vielzahl von Molekülen spezifisch reagieren. Dadurch wird eine selektive Detektion von Molekülen ermöglicht.

Als prototypisches Beispiel demonstrieren die Autorinnen und Autoren einen spezifischen Ethanolsensor, der im Gegensatz zu kommerziellen Sensoren weder auf andere Alkohole noch auf Feuchtigkeit reagiert. An der Studie beteiligt waren Wissenschaftler vom Karlsruhe Institut für Technologie (KIT) und der Technischen Universität Darmstadt (TUDa) unter Federführung der Professoren Wolfgang Wenzel (KIT), Christof Wöll (KIT) und Ralph Krupke (KIT, TUDa), Erstautor ist Sandeep Kumar, Doktorand im Fachgebiet Molekulare Nanostrukturen am Institut für Materialwissenschaft der TU Darmstadt.

Die neuartigen Sensoren schließen eine bestehende Lücke in der Sensorik. Bereits in Verwendung sind 2D-Materialien, also kristalline Stoffe, die aus einer einzigen Schicht von Atomen oder Molekülen bestehen. Das Problem ist ihre Verfügbarkeit: Zurzeit ist die Kohlenstoff-Form Graphen das einzig kommerziell verfügbare 2D-Material, dessen elektrischer Widerstand auf adsorbierte Moleküle hinreichend reagiert. Um ihn auf breiter Basis für die Sensorik nutzen zu können, muss er mit einer metall-organischen Beschichtung ergänzt werden, die dafür sorgt, dass Graphen dann nur auf spezifische Stoffe reagiert. Bislang kaum erforscht war die Anwendung einer solchen Kombination als Sensor für Gase oder Chemikalien.

Das Team aus Forschenden von TU Darmstadt und KIT verband einen Graphen-Feldeffekttransistor mit einer metall-organischen Gitter-Beschichtung und kombinierte so die positiven Eigenschaften beider Komponenten zu einem neuartigen, leistungsfähigen Sensor: die große Empfindlichkeit und leichte Auslesbarkeit des Graphen-Feldeffekttransistors und die hohe Selektivität der metall-organischen Beschichtung.

Angesichts der zahllosen Variationen von Beschichtungen und der Möglichkeiten, die Oberflächen zwischen Beschichtung und Graphen-Feldeffekttransistoren chemisch zu gestalten, sehen die Forschenden in der Neuerung das Potenzial für die Entstehung einer ganz neuen Klasse von Sensoren mit maßgeschneiderter Selektivität und Empfindlichkeit.

Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland und steht für exzellente und relevante Wissenschaft. Globale Transformationen – von der Energiewende über Industrie 4.0 bis zur Künstlichen Intelligenz – gestaltet die TU Darmstadt durch herausragende Erkenntnisse und zukunftsweisende Studienangebote entscheidend mit.
Ihre Spitzenforschung bündelt die TU Darmstadt in drei Feldern: Energy and Environment, Information and Intelligence, Matter and Materials. Ihre problemzentrierte Interdisziplinarität und der produktive Austausch mit Gesellschaft, Wirtschaft und Politik erzeugen Fortschritte für eine weltweit nachhaltige Entwicklung.
Seit ihrer Gründung 1877 zählt die TU Darmstadt zu den am stärksten international geprägten Universitäten in Deutschland; als Europäische Technische Universität baut sie in der Allianz Unite! einen transeuropäischen Campus auf. Mit ihren Partnern der Rhein-Main-Universitäten – der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz – entwickelt sie die Metropolregion Frankfurt-Rhein-Main als global attraktiven Wissenschaftsraum weiter.

www.tu-darmstadt.de

MI-Nr. 61/2021, sip

Wissenschaftliche Ansprechpartner:

Kumar S. et al. (2021): Sensing molecules with metal-organic framework functionalized graphene transistors. Advanced Materials;
https://doi.org/10.1002/adma.202103316

https://www.tu-darmstadt.de/universitaet/aktuelles_meldungen/einzelansicht_330560.de.jsp

Media Contact

Ulrike Albrecht Stabsstelle Kommunikation und Medien
Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Krebsprädispositionssyndrome bei Kindern und Jugendlichen

Krebs entschlüsseln: 40 Jahre Durchbrüche in der genetischen Forschung

Krebs bei Kindern und Jugendlichen ist selten. Dennoch gehören bösartige Erkrankungen in dieser Altersgruppe nach wie vor zu den häufigsten Todesursachen. Überlebende einer Krebserkrankung im Kindes- oder Jugendalter erleiden oftmals…

Innovative Immuntherapiestrategien zur Verbesserung der Nierenkrebsdiagnose und -behandlung.

Bekämpfung von Nierenkrebs durch verbesserte Immuntherapien

Forscher des Hollings Cancer Center der Medical University of South Carolina erhalten den Early Career Scholar Award des Verteidigungsministeriums, um Immuntherapien durch die gezielte Behandlung von resistenten Nierentumoren zu verbessern….

Unterschiede in der Hirnstruktur bei Jugendlichen mit Risiko für frühen Substanzgebrauch

Lassen Sie uns vor dem ersten Getränk nachdenken: Wie frühe Substanznutzung zu Unterschieden in der Gehirnstruktur bei Jugendlichen führen könnte

Viele Unterschiede schienen bereits vor jeglichem Substanzkonsum zu bestehen, was auf die Rolle hinweist, die die Gehirnstruktur beim Risiko des Substanzkonsums spielen könnte, wie eine vom NIH unterstützte Studie nahelegt….