Tröpfchen mit Coronaviren halten länger als gedacht

Computersimulationen zeigen, wie lange sich kleine Tröpfchen in der Luft halten können.
(c) TU Wien

Winzige, mit Viren beladene Tröpfchen verschwinden nach dem Ausatmen langsamer als bisherige Modelle vermuten ließen. Experimente und Simulationen der TU Wien können das nun erklären.

Im Winter steckt man sich leichter an als im Sommer – das gilt für die Corona-Pandemie, für Influenza und für andere virale Erkrankungen. Eine wesentliche Rolle spielt dabei die relative Luftfeuchtigkeit. Sie ist im Winter draußen viel höher als im Sommer, man erkennt das etwa daran, dass unser Atem an der kalten Luft zu Tröpfchen kondensiert.

Bisherige Modelle gingen davon aus, dass nur große Tröpfchen eine relevante Ansteckungsgefahr mit sich bringen, weil kleine Tröpfchen schnell verdunsten. An der TU Wien konnte man nun allerdings in Zusammenarbeit mit der Universität Padua zeigen, dass das nicht stimmt: Durch die hohe Feuchtigkeit der Atemluft können auch kleine Tröpfchen viel länger in der Luft bleiben als bisher angenommen. Die Studie wurde im Fachjournal PNAS publiziert.

Simulationen und Experimente mit Dummy-Kopf

Prof. Alfredo Soldati und sein Team am Institut für Strömungsmechanik und Wärmeübertragung der TU Wien beschäftigen sich mit Strömungen, die aus unterschiedlichen Komponenten zusammengesetzt sind – man spricht von „Mehrphasenströmungen“. Dazu zählt auch die Luft, die ein infizierter Mensch beim Niesen ausatmet: Die infektiösen Viren befinden sich in Flüssigkeitströpfchen unterschiedlicher Größe, dazwischen befindet sich Gas.

Diese Mischung führt zu einem relativ komplizierten Strömungsverhalten: Sowohl Tröpfchen als auch Gas bewegen sich, beide Komponenten beeinflussen einander, und die Tröpfchen können dabei verdunsten und selbst zum Gas werden. Um diesen Effekten auf den Grund zu gehen, wurden an der TU Wien Computersimulationen entwickelt, in denen man die Ausbreitung von Tröpfchen und Atemluft bei unterschiedlichen Umgebungsparametern berechnen kann, etwa bei unterschiedlicher Temperatur und Luftfeuchtigkeit.

Experimente mit Plastikkopf
(c) TU Wien

Zusätzlich führte man Experimente durch: In einen Kopf aus Kunststoff wurde eine Düse mit einem elektromagnetisch gesteuerten Ventil eingebaut, um auf präzise definierte Weise ein Gemisch aus Tröpfchen und Gas zu versprühen. Mit Hochgeschwindigkeitskameras wurde der Vorgang aufgezeichnet, so konnte man genau messen, welche Tröpfchen wie lange in der Luft bleiben. An dem Forschungsprojekt beteiligt war außerdem das Team von Francesco Picano an der Universität Padua.

Die feuchte Atemluft lässt Tröpfchen länger schweben

„Wir haben festgestellt, dass kleine Tröpfchen eine Größenordnung länger in der Luft bleiben als man bisher gedacht hatte“, sagt Alfredo Soldati. „Das hat einen simplen Grund: Für die Verdunstungsrate der Tröpfchen ist nicht die durchschnittliche relative Luftfeuchtigkeit der Umgebung entscheidend, sondern die lokale Feuchtigkeit direkt am Aufenthaltsort des Tröpfchens.“ Die ausgeatmete Luft ist viel feuchter als die Umgebungsluft, und diese ausgeatmete Feuchtigkeit führt dazu, dass kleine Tröpfchen langsamer verdunsten. Wenn die ersten Tröpfchen verdunsten, führt das lokal wieder zu einer höheren Feuchtigkeit, wodurch der weitere Verdunstungsprozess anderer Tröpfchen weiter gebremst wird.

„Das heißt zwar, dass kleine Tröpfchen länger infektiös sind als angenommen, aber das soll kein Grund für Pessimismus sein“, meint Alfredo Soldati. „Es zeigt uns nur, dass man solche Phänomene eben auf die korrekte Weise studieren muss, um sie zu verstehen. Nur dann können wir wissenschaftlich solide Empfehlungen machen, etwa in Bezug auf Masken und Sicherheitsabstände.“

Wissenschaftliche Ansprechpartner:

Prof. Alfredo Soldati
Institut für Strömungsmechanik und Wärmeübertragung
Technische Universität Wien
+43 1 58801 32213
alfredo.soldati@tuwien.ac.at

Originalpublikation:

J. Wang et al., Short-range exposure to airborne virus transmission and current guidelines, PNAS 118 (37), 2021.
https://www.pnas.org/content/118/37/e2105279118/tab-figures-data

http://www.tuwien.ac.at

Media Contact

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…