Dem Lochfraß bei Edelstahl auf der Spur
Explosionsartige Vermehrung winziger „Rostlöcher“ ist Ursache massiver Korrosionsschäden, berichten Forscher des Berliner Fritz-Haber-Instituts
Rostfreier Stahl kann sehr schnell korrodieren, wenn sich das anliegende Potential, die Konzentration korrodierender Lösungen oder die Temperatur nur leicht verändern. Wissenschaftler des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und der Universität Virginia, USA, haben jetzt unter Einsatz spezieller Mikroskopie-Techniken herausgefunden, dass das schlagartige Einsetzen der Korrosion darauf beruht, dass sich die Zahl winziger metastabiler Löcher in der betroffenen Metalloberfläche explosionsartig vermehrt. Dieser Befund deckt sich mit theoretischen Modellen, wonach sich das Phänomen des Lochfraßes unter entsprechenden Bedingungen autokatalytisch wie eine Kettenreaktion ausbreitet. Die in der jüngsten Ausgabe von „Science“ veröffentlichten Forschungsergebnisse tragen entscheidend dazu bei, Korrosionsprozesse besser verstehen, kontrollieren und letztendlich vermeiden zu können (Science, 20. August 2004).
Rostfreie Stähle, die eigentlich korrosionsresistent sein sollten, können lokalem Lochfraß zum Opfer fallen, was häufig ganze Bauteile versagen lässt. Allein in den USA belaufen sich die jährlichen Verluste durch Korrosion auf etwa drei Prozent des Bruttosozialprodukts. Etwa ein Drittel der Ausfälle chemischer Anlagen sind auf lokale Korrosion zurückzuführen.
Vor dem eigentlichen Lochfraß bilden sich in der schützenden Oxidhaut der Stähle winzige, metastabile Löcher von wenigen Mikrometern Durchmesser, so genannte Pits. Jeder Pit erzeugt während seines Entstehens einen sekundenlangen kleinen Strompuls, der die chemische Reaktion anzeigt. Die Lochfraßkorrosion setzt plötzlich ein. Bei geringsten Veränderungen der äußeren Bedingungen kann die Korrosionsrate extrem ansteigen.
Obwohl die Prozesse, die zum Auftreten einzelner Pits führen, bereits relativ gut erforscht sind, war das plötzliche Auftreten von Lochfraß bislang ungeklärt. Wissenschaftler des Fritz-Haber-Instituts in Zusammenarbeit mit einem Team von der Universität Virginia haben deshalb neue mikroskopische Methoden entwickelt, um den Beginn des Lochfraßes in Echtzeit beobachten zu können. Eine dieser Methoden, die Ellipsomikroskopie zur Abbildung von Oberflächen (Ellipsomicroscopy for Surface Imaging), macht die sich ausbreitenden Schädigungen der Oxidschicht sichtbar.
Daneben verfolgten die Forscher unter einem hochauflösenden und kontrastverstärkten optischen Mikroskop die Entstehung einzelner Pits und ihr kollektives Verhalten. Sie fanden heraus, dass das plötzliche Auftreten von Lochfraßkorrosion auf eine explosionsartige Vermehrung der Pits zurückzuführen ist. Die Forscher haben diesen Prozess auch im Computer simuliert: Dabei gingen sie von der Annahme aus, dass sich ein neuer Pit mit hoher Wahrscheinlichkeit in der unmittelbaren Umgebung bereits vorhandener Pits bildet. Danach ist das plötzliche Auftreten von Lochfraßkorrosion vergleichbar mit der Ausbreitung ansteckender Krankheiten oder einer Kettenreaktion.
Diese Schädigung der Stahloberflächen lässt sich durch Veränderung der die Korrosion verursachenden Lösung (durch die Zugabe von Inhibitoren) oder durch die Optimierung der Stahllegierung verhindern. Die von den Forschern entwickelten Mikroskopie-Techniken lassen sich für die Visualisierung verschiedenster Korrosionserscheinungen bei Metallen einsetzen.
Originalveröffentlichung:
C. Punckt, M. Bölscher, H. H. Rotermund, A. S. Mikhailov, L. Organ, N. Budiansky, J. R. Scully, and J. L. Hudson
Sudden Onset of Pitting Corrosion on Stainless Steel as a Critical Phenomenon
Science, 20 August 2004
Weitere Informationen erhalten Sie von:
Prof. Dr. A. S. Mikhailov
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: 030 8413-5122
E-Mail: mikhailov@fhi-berlin.mpg.de
Prof. Dr. H. H. Rotermund
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: 030 8413-5129
E-Mail: rotermun@fhi-berlin.mpg.de
Media Contact
Weitere Informationen:
http://www.fhi-berlin.mpg.deAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln
Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…
Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne
Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…
Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten
Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….