Kohlenstoff im Röntgenblick
Neues Messverfahren verspricht spektakuläre Erkenntnisse über das Innenleben von Planeten.
Im Zentrum von Planeten finden sich extreme Zustände: Es herrschen Temperaturen von abertausend Grad, der Druck ist millionenfach größer als der Atmosphärendruck. Dies unmittelbar zu erforschen ist deswegen nur bedingt möglich – weshalb die Fachwelt versucht, entsprechende Extremverhältnisse mit aufwändigen Experimenten nachzustellen. Ein internationales Forschungsteam unter Beteiligung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) hat ein etabliertes Messverfahren an diese Extrembedingungen angepasst und erfolgreich getestet:
Mit den Lichtblitzen des stärksten Röntgenlasers der Welt gelang es dem Team, das wichtige Element Kohlenstoff mitsamt seinen chemischen Eigenschaften ins Visier zu nehmen. Damit hat die Methode das Potential, neue Einblicke in das Innere von Planeten sowohl innerhalb als auch außerhalb unseres Sonnensystems zu liefern, wie das Fachmagazin Physics of Plasmas (DOI: 10.1063/5.0048150) berichtet.
Die Hitze ist unvorstellbar, der Druck ist enorm: Die Bedingungen im Inneren von Jupiter oder Saturn sorgen dafür, dass die Materie dort in einem ungewöhnlichen Zustand vorliegt: Sie ist dicht wie ein Metall, zugleich aber elektrisch geladen wie bei einem Plasma. „Wir bezeichnen diesen Zustand als warme dichte Materie“, erläutert Dominik Kraus, Physiker am HZDR sowie Professor an der Universität Rostock. „Es ist ein Übergangszustand zwischen Festkörper und Plasma, der im Inneren von Planeten vorkommt, kurzzeitig aber auch auf der Erde auftreten kann, etwa bei Meteoriteneinschlägen.“ Detailliert untersuchen lässt sich dieser Materiezustand im Labor nur mit einigem Aufwand, zum Beispiel indem starke Laserblitze auf eine Materialprobe feuern und sie für einen Wimpernschlag erhitzen und komprimieren.
Doch wie sehen die chemischen Eigenschaften dieser warmen dichten Materie aus? Diese Frage lässt sich mit den bisherigen Verfahren nur unzulänglich beantworten. Also ließ sich ein Team aus sechs Ländern etwas Neues einfallen. Basis ist der stärkste Röntgenlaser der Welt, der European XFEL in Hamburg. In einem kilometerlangen Beschleuniger werden hier extrem kurze und intensive Röntgenpulse erzeugt. „Die Pulse haben wir auf dünne Folien aus Kohlenstoff gelenkt“, beschreibt Erstautorin Katja Voigt vom HZDR-Institut für Strahlenphysik. „Sie bestanden aus Graphit oder Diamant.“ In den Folien wird ein kleiner Teil der Röntgenblitze an Elektronen und deren unmittelbarer Umgebung gestreut. Das Entscheidende: Diese gestreuten Blitze können verraten, welche Art von chemischer Bindung die Kohlenstoffatome mit ihrer Umgebung eingegangen sind.
Erst Zweifel, dann Überraschung
Zwar kommt dieses als Röntgen-Raman-Streuung bezeichnete Verfahren in der Forschung schon länger zum Einsatz, etwa in den Materialwissenschaften. Doch das Team um Voigt und Kraus schaffte es nun erstmals, es für Versuche zur Erforschung von warmer dichter Materie nutzbar zu machen. „Manche Fachleute hatten bezweifelt, dass das funktionieren kann“, erzählt Kraus. Insbesondere mussten die Detektoren, die die von den Kohlenstofffolien ausgehenden Röntgensignale aufschnappen, hocheffizient und zugleich hochauflösend sein – eine große technische Herausforderung. Doch die Analyse der Messdaten ließ deutlich erkennen, welche Bindungszustände der Kohlenstoff eingegangen war. „Dass das so gut geklappt hat, hat uns schon ein bisschen überrascht“, freut sich Voigt.
Eines aber fehlt noch, um warme dichte Materie mit dem Verfahren zu untersuchen – starke Laserblitze, die die Kohlenstofffolien auf hohe Drücke und Temperaturen von bis zu mehreren 100.000 Grad bringen. Dafür kommt die Helmholtz International Beamline for Extreme Fields (HIBEF) ins Spiel, welche unter Federführung des HZDR am European XFEL eingeweiht wurde und als eine der modernsten Forschungsanlagen weltweit gilt. Hier sind mittlerweile leistungsstarke Laser installiert, sodass erste Röntgen-Raman-Experimente in einigen Monaten stattfinden könnten. „Ich bin sehr optimistisch, dass das funktionieren wird“, meint Dominik Kraus.
Kometen-Crash im Labor
Die wissenschaftlichen Erkenntnisse, die das neue Verfahren bringen könnte, sind vielfältig: Unter anderem ist unklar, wie viele leichte Elemente wie Kohlenstoff oder Silizium im Erdkern stecken. Laborexperimente könnten hier wichtige Hinweise liefern. „Die neue Methode ist nicht nur auf Kohlenstoff anwendbar, sondern auch für andere leichte Elemente“, erläutert Katja Voigt. Eine weitere Fragestellung: Im Inneren sogenannter Gasriesen wie Jupiter oder Eisriesen wie Neptun dürften komplexe chemische Reaktionen ablaufen – ebenso wie in fernen Exoplaneten von ähnlicher Statur. Per Röntgen-Raman-Verfahren sollten sich diese Prozesse im Labor nachvollziehen lassen. „Vielleicht lässt sich damit ja das Rätsel lösen, welche Reaktionen dafür verantwortlich sind, dass Planeten wie Neptun und Saturn mehr Energie abstrahlen als sie eigentlich sollten“, hofft Kraus.
Mit der neuen Technik sollten sich aber auch Kometeneinschläge im Mini-Maßstab simulieren lassen: Falls Kometen einst organisches Material auf die Erde brachten – könnte es beim Einschlag zu chemischen Reaktionen gekommen sein, die die Entstehung des Lebens begünstigten? Und sogar für technische Anwendungen birgt das Verfahren Potential: Im Prinzip scheint es möglich, dass sich unter Extrembedingungen neuartige Werkstoffe bilden, die faszinierende Eigenschaften zeigen. Ein Beispiel wäre ein Supraleiter, der bei Raumtemperatur funktioniert und anders als bisherige Materialien nicht aufwändig gekühlt werden muss. Für die Technik wäre ein solcher Raumtemperatur-Supraleiter hochinteressant: Er könnte Strom völlig verlustfrei leiten, ohne dass man ihn mit Flüssigstickstoff oder Flüssighelium kühlen muss.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Dominik Kraus
Institut für Strahlenphysik am HZDR sowie Universität Rostock
Tel.: +49 381 498 6930| E-Mail: d.kraus@hzdr.de
Katja Voigt
Institut für Strahlenphysik am HZDR
Tel.: +49 351 260 2240 | E-Mail: k.voigt@hzdr.de
Originalpublikation:
K. Voigt, M. Zhang, K. Ramakrishna, A. Amouretti, K. Appel, E. Brambrink, V. Cerantola, D. Chekrygina, T. Döppner, R. Falcone, K. Falk, L. Fletcher, D. Gericke, S. Göde, M. Harmand, N. Hartley, S. Hau-Riege, L. Huang, O. Humphries, M. Lokamani, M. Makita, A. Pelka, C. Prescher, A. Schuster, M. Šmíd, T. Toncian, J. Vorberger, U. Zastrau, T. Preston, D. Kraus: Demonstration of an x-ray Raman spectroscopy setup to study warm dense carbon at the high energy density instrument of European XFEL, in Physics of Plasmas, 2021 (DOI: 10.1063/5.0048150)
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…