Neuer Algorithmus klassifiziert Hautkrankheiten
Deep-Learning-Algorithmus mit verbesserter Diagnosegenauigkeit
Neues Datenfusionsverfahren verbessert die Diagnosegenauigkeit
Ein Forschungsteam um PD Dr. Tobias Lasser vom Munich Institute of Biomedical Engineering (MIBE) der Technischen Universität München (TUM) hat nun einen neuen Lernalgorithmus – FusionM4Net – entwickelt, der eine höhere durchschnittliche Diagnosegenauigkeit aufweist als bisherige Algorithmen. Der Code für FusionM4Net ist frei verfügbar (https://ciip.in.tum.de/software.html). Der neue Algorithmus verwendet einen sogenannten multimodalen, mehrstufigen Prozess zur Datenzusammenführung.
- „Multi-modal“ – Mehrere Datenmodalitäten: Der Lernalgorithmus integriert drei verschiedene Datentypen: In der Klinik aufgenommene Fotos, mikroskopische Bilder der verdächtigen Hautläsion und Metadaten der Patientinnen und Patienten.
- „Multi-label“ – Mehrere Hauterkrankungen: Die Forschenden trainierten den Algorithmus zur Unterscheidung fünf verschiedener Kategorien von Hautveränderungen.
- „Multi-stage“ – Mehrere Stufen: Der neue Algorithmus fügt zunächst die verfügbaren Bilddaten und dann die Metadaten der Patientin oder des Patienten zusammen. Dieser zweistufige Prozess ermöglicht eine Gewichtung der Bilddaten und Metadaten beim Entscheidungsprozess des Algorithmus. Dadurch unterscheidet sich FusionM4Net deutlich von bisherigen Algorithmen auf diesem Gebiet, die alle Daten auf einmal zusammenführen.
Um die Diagnosegenauigkeit eines Algorithmus zu bewerten, kann er mit der besten vorhandenen Klassifizierung für den verwendeten Datensatz verglichen werden, für die der Wert 100 Prozent angesetzt wird. Die durchschnittliche Diagnosegenauigkeit von FusionM4Net verbesserte sich durch den mehrstufigen Prozess auf 78,5 Prozent und übertraf damit alle weiteren Algorithmen, mit denen er verglichen wurde.
Auf dem Weg zur klinischen Anwendung
Um die Reproduzierbarkeit zu gewährleisten, wurde zum Trainieren des Algorithmus ein öffentlich zugänglicher Datensatz verwendet. Datensätze sind in der Dermatologie jedoch nicht überall standardisiert. Je nach Klinik können unterschiedliche Arten von Bildern und Patienteninformationen vorliegen. Daher muss der Algorithmus für den tatsächlichen klinischen Einsatz mit den Daten umgehen können, die in der jeweiligen Klinik verfügbar sind.
Gemeinsam mit der Klinik und Poliklinik für Dermatologie und Allergologie des Universitätsklinikums der LMU München arbeitet das Forschungsteam intensiv daran, den Algorithmus für die zukünftige klinische Routine einsatzfähig zu machen. Dafür integriert das Team aktuell zahlreiche Datensätze, die für diese Klinik standardisiert wurden.
„Der künftige routinemäßige klinische Einsatz von Algorithmen mit hoher Diagnosegenauigkeit könnte dabei helfen, dass seltene Krankheiten auch von weniger erfahrenen Ärztinnen und Ärzten erkannt werden. Entscheidungen, die durch Stress oder Übermüdung beeinträchtigt sind, könnten dadurch zudem reduziert werden“, sagt PD Dr. Tobias Lasser. So könnten Lernalgorithmen dazu beitragen, das Niveau der medizinischen Versorgung insgesamt zu verbessern.
Publikationen:
Peng Tang, Xintong Yan, Yang Nan, Shao Xiang, Sebastian Krammer, Tobias Lasser
FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification. Medical Image Analysis, 22. November, 2021. DOI: 10.1016/j.media.2021.102307
Wissenschaftliche Ansprechpartner:
PD Dr. Tobias Lasser
Technische Universität München
Munich Institute of Biomedical Engineering (MIBE)
Tel: +49 89 289-10807
lasser@in.tum.de
Weitere Informationen:
https://www.bioengineering.tum.de/ Munich Institute of Biomedical Engineering (MIBE)
https://mediatum.ub.tum.de/1638729 Hochauflösende Bilder für die redaktionelle Berichterstattung
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/37138
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…