Elektronen im japanischen Muster: Kagome-Metall verblüfft Wissenschaft
Auf dem Weg zu einer neuen Art von Supraleitung: Publikation in „Nature“.
Auf dem Weg zu einer neuen Art von Supraleitung: Erst vor etwa vier Jahren haben Forschende herausgefunden, dass es Metalle gibt, in denen Atome wie in einem japanischem Flechtkorbmuster angeordnet sind – sogenannte Kagome-Metalle. Ein internationaler Forschungshype um die metallische Wunderwerkstoffklasse begann, der nun einen weiteren Meilenstein erreicht hat: Die Kagome-Struktur des Atomgitters führt zu einer außergewöhnlichen Kombination von herausragenden Quanteneigenschaften, die jetzt von einem internationalen Physikerteam erstmals nachgewiesen wurden und eine ganz neue Art von Supraleitung ermöglichen könnten. Prof. Ronny Thomale, Forscher des Würzburg-Dresdner Exzellenzclusters ct.qmat, sagte solche Quanteneffekte bereits vor zehn Jahren theoretisch voraus. Heute unterstützen seine Ideen Forschende weltweit bei der Interpretation ihrer Messdaten. Die jüngsten experimentellen Nachweise wurden in der renommierten Fachzeitschrift Nature veröffentlicht.
Atome bilden Kagome-Muster
Ein Kagome-Muster besteht aus drei regelmäßigen, ineinander verschobenen Dreiecksgittern. Im Ergebnis erscheint die Struktur wie eine endlose Aneinanderreihung von Davidsternen. In Japan ist Kagome ein traditionelles Korbflechtmotiv. Die Festkörperphysik erforscht die ungewöhnliche Atomgitterform seit den 1990er-Jahren. Bis 2018 nahm man jedoch an, dass Kagome-Materialien vor allem elektrische Isolatoren mit interessanten magnetischen Eigenschaften sein könnten. Dass es auch anders geht, sagte Ronny Thomale, Wissenschaftler des Würzburg-Dresdner Exzellenzclusters ct.qmat – Komplexität und Topologie in Quantenmaterialien, allerdings bereits 2012 vorher. Vor rund vier Jahren wurde dann das erste Metall mit Kagome-Struktur realisiert, bestehend aus einer Eisen-Zinn-Verbindung.
„Seitdem sind Kagome-Metalle im experimentellen Bereich angekommen und lösten einen echten Forschungshype aus. Weltweit ist man auf der Suche nach Kagome-Metallen, die außergewöhnliche Quantenphänomene zeigen. Ziel ist, auf ein Material zu stoßen, das zum Beispiel eine ganz neue Art von Supraleitung ermöglichen könnte“, erklärt der theoretische Physiker Ronny Thomale.
Verblüffende Ergebnisse
Einer internationalen Forschungskooperation unter Leitung des Schweizer Paul Scherrer Instituts ist nun ein weiterer Fortschritt gelungen: Im Kagome-Metall Kalium-Vanadium-Antimon (KV3Sb5) konnten erstmals mehrere außergewöhnliche Quantenphänomene gleichzeitig experimentell nachgewiesen werden.
Hierfür wurde das Kagome-Metall KV3Sb5 so tiefgekühlt, bis es supraleitend wurde, also den Strom verlustfrei leitet. In dieser Phase wurden eindeutige Hinweise auf eine Brechung der Zeitumkehrsymmetrie gefunden.
„Wenn die Zeitumkehrsymmetrie in einem nichtmagnetischen System gebrochen ist, klingeln bei uns Physikern alle Alarmglocken“, sagt Thomale. „Nur etwa ein Prozent aller Supraleiter zeigt das Phänomen, dass ‚vorwärts’ und ‚rückwärts’ auf der Ebene der Elementarteilchen überhaupt eine Rolle spielen. Besonders verblüffend war, dass dies schon bei verhältnismäßig hohen Temperaturen um -190 Grad Celsius eingesetzt hat. Im Kagome-Metall kann das passieren, weil sich die Elektronen auf dieser außergewöhnlichen Gitterstruktur auch außergewöhnlich verhalten: Sie ordnen sich wellenartig an, sodass mal mehr und mal weniger Elektronen auf den einzelnen Kagome-Atomgitterplätzen vorkommen. Durch diese Wellen, die wir Ladungsdichtewellen nennen, können die Elektronen zudem in eine bestimmte Richtung fließen und so Orbitalströme bilden. Bei der Bewegung in eine bestimmte Richtung werden ‚vorwärts’ und ‚rückwärts’ unterscheidbar und damit die Zeitumkehrsymmetrie gebrochen. Das hat die weltweite Forschungscommunity sehr erstaunt.“
Forschungshype vorhergesagt
Nachdem 2018 das erste Metall mit einer Kagome-Atomgitterstruktur realisiert werden konnte, wurde die spontane ladungswellenartige Anordnung der Elektronen im Kagome-Atomgitter 2020 experimentell nachgewiesen. Mit den vorliegenden Forschungsergebnissen kommt jetzt der erste experimentelle Nachweis der Zeitumkehrsymmetrie-Brechung hinzu. Als Höhepunkt dieser Quanteneffekte wurde erstmals eine neue, unkonventionelle Art von Supraleitung nachgewiesen.
„Der Nachweis dieser neuen Art von Supraleitung in den Kagome-Metallen wird den weltweiten Forschungsboom in der Quantenphysik weiter befeuern“, prognostiziert der Dresdner Sprecher der Forschungsallianz ct.qmat, Prof. Matthias Vojta. „Im Würzburg-Dresdner Exzellenzcluster ct.qmat erforschen wir die neue Kagome-Materialklasse mit verschiedenen experimentellen Methoden und sind besonders stolz, dass unser Gründungsmitglied Ronny Thomale hierfür entscheidende Vorarbeiten geleistet hat.“
Professor Ronny Thomale (39) hat seit Oktober 2016 den Lehrstuhl für Theoretische Physik I an der Julius-Maximilians-Universität Würzburg inne und gehört zu den 25 Gründungsmitgliedern des Exzellenzclusters ct.qmat. 2012 entwickelte er – parallel zur Forschungsgruppe von Prof. Qianghua Wang der Nanjing University – eine Theorie, die als entscheidende Grundlage für das Verständnis der neuen experimentellen Resultate von Kagome-Metallen gilt.
Ausblick
Mit dem Nachweis der Zeitumkehrsymmetrie-Brechung ist die Hoffnung auf eine neue Form verlustfreier Stromleitung verbunden, die als sogenannte Hochtemperatursupraleitung idealerweise bei Raumtemperatur funktionieren könnte. Forschende weltweit werden die zielgerichtete Suche nach Materialkombinationen für Kagome-Metalle fortsetzen und intensivieren. Aus experimenteller Sicht fehlt noch der hochkomplexe, unmittelbare Nachweis orbitaler Ströme, die bisher nur indirekt gemessen werden konnten. Gelingt es, die orbitalen Ströme in einem Kagome-Metall direkt zu zeigen, wird ein weiterer Meilenstein erreicht sein.
Exzellenzcluster ct.qmat
Das Exzellenzcluster ct.qmat – Complexity and Topology in Quantum Matter (Komplexität und Topologie in Quantenmaterialien) wird seit 2019 gemeinsam von der Julius-Maximilians-Universität Würzburg und der TU Dresden getragen. Mehr als 270 Wissenschaftlerinnen und Wissenschaftler aus 34 Ländern und von vier Kontinenten erforschen topologische Quantenmaterialien, die unter extremen Bedingungen wie ultratiefen Temperaturen, hohem Druck oder starken Magnetfeldern überraschende Phänomene offenbaren. Das Exzellenzcluster wird im Rahmen der Exzellenzstrategie des Bundes und der Länder gefördert – als einziges bundeslandübergreifendes Cluster in Deutschland.
Wissenschaftliche Ansprechpartner:
Prof. Ronny Thomale, Lehrstuhl für Theoretische Physik I, Universität Würzburg, Tel: +49 931 31-86225, rthomale@physik.uni-wuerzburg.de
Katja Lesser, Referentin für Öffentlichkeitsarbeit Exzellenzcluster ct.qmat, Tel: +49 351 463 33496, katja.lesser@tu-dresden.de
Originalpublikation:
Mielke, C., Das, D., Yin, JX. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022). https://doi.org/10.1038/s41586-021-04327-z
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…