Neutrinos sind leichter als 0,8 Elektronenvolt

Einbau von Elektroden in das Hauptspektrometer des KATRIN-Experiments
(c) Joachim Wolf / KIT

KATRIN-Experiment mit neuem Weltrekord bei Präzisionsmessungen.

Das internationale KArlsruhe TRItium Neutrino Experiment, kurz KATRIN, am Karlsruher Institut für Technologie (KIT) hat die Neutrinomasse erstmals auf unter ein Elektronenvolt (eV) eingegrenzt und damit eine „Barriere“ in der Neutrinophysik durchbrochen. Aus den aktuell in der Fachzeitschrift Nature Physics veröffentlichten Daten lässt sich eine Obergrenze von 0,8 eV für die Masse des Neutrinos ableiten. Diese mit einer modell-unabhängigen Labormethode gewonnenen Ergebnisse ermöglichen es KATRIN, die Masse dieser „Leichtgewichte des Universums“ mit bisher unerreichter Präzision einzugrenzen.

Neutrinos sind die wohl faszinierendsten Elementarteilchen in unserem Universum. In der Kosmologie spielen sie eine wichtige Rolle bei der Bildung von großräumigen Strukturen, und in der Welt der Teilchenphysik nehmen sie eine Sonderstellung ein durch ihre winzige Masse, die auf neue physikalische Prozesse jenseits unserer bisherigen Theorien hinweist. Ohne eine Messung der Neutrinomasse wird unser Verständnis des Universums unvollständig bleiben.

Hier setzt das internationale KATRIN-Experiment am KIT mit Partnern aus sechs Ländern als weltweit sensitivste Waage für Neutrinos an. Es benutzt den Beta-Zerfall von Tritium, einem instabilen Wasserstoff-Isotop, um aus der Energieverteilung der bei diesem Zerfall erzeugten Elektronen die Masse des Neutrinos zu bestimmen. Dazu ist ein enormer technischer Aufwand notwendig: Das 70 Meter lange Experiment beherbergt die weltweit intensivste Quelle von Tritium sowie ein riesiges Spektrometer, mit dem sich die Energien der Zerfallselektronen mit bisher unerreichter Präzision messen lassen.

Die hohe Qualität der ersten Daten nach der Inbetriebnahme im Jahr 2019 konnte in den letzten beiden Jahren kontinuierlich gesteigert werden. „KATRIN als Experiment mit höchsten technologischen Anforderungen läuft nun wie ein perfektes Uhrwerk“, freut sich Guido Drexlin vom KIT, der Projektleiter und einer der beiden Co-Sprecher des Experiments. Christian Weinheimer, Universität Münster, der andere Co-Sprecher, ergänzt: „Dabei waren die Reduktion der Störsignale und die Erhöhung der Signalrate entscheidend für das neue Resultat“.

Analyse der Daten

Die Auswertung dieser Daten stellte das internationale Team um die beiden Analyse-Koordinatoren Susanne Mertens, Max-Planck-Institut für Physik (MPP) und Technische Universität München und Magnus Schlösser, KIT, vor große Herausforderungen: Jeder Einfluss auf die Neutrinomasse, so klein er auch sein mochte, musste detailliert untersucht werden. „Nur durch diese aufwändige und akribische Arbeit konnten wir eine systematische Beeinflussung unseres Resultats durch andere Effekte wirklich ausschließen. Wir sind ganz besonders stolz auf unser Analyseteam, das sich dieser Herausforderung mit großem Engagement erfolgreich gestellt hat“, so Mertens und Schlösser.

Bild vergrößern…
Das 70 Meter lange KATRIN-Experiment mit seinen Hauptkomponenten Tritiumquelle, Hauptspektrometer und Detektor
(c) Leonard Köllenberger/KATRIN Collaboration

Die experimentellen Daten des ersten Messjahres und die Modellierung auf Basis einer verschwindend kleinen Neutrinomasse passen perfekt: Daraus lässt sich eine neue Obergrenze für die Neutrinomasse von 0,8 Elektronenvolt (eV) bestimmen. Erstmals stößt so ein direktes Neutrinomassenexperiment in den kosmologisch und teilchenphysikalisch wichtigen Massenbereich unter einem Elektronenvolt vor, in dem die fundamentale Massenskala von Neutrinos vermutet wird. „Die Teilchenphysik-Gemeinschaft ist begeistert, dass die 1-eV-Barriere von KATRIN durchbrochen wurde“ kommentiert Neutrinoexperte John Wilkerson, University of North Carolina, der Vorsitzende des KATRIN Executive Boards.

Susanne Mertens erläutert den Weg zum neuen Rekord: „Unser Team am MPP in München hat für KATRIN eine neue Analysemethode entwickelt, die speziell auf die Anforderungen dieser hochpräzisen Messung optimiert ist. Diese Strategie wurde erfolgreich für die vergangenen und aktuellen Ergebnisse eingesetzt. Meine Gruppe ist hochmotiviert: Wir werden uns auch den künftigen Herausforderungen der KATRIN-Analyse mit neuen kreativen Ideen und akribischer Genauigkeit stellen.“

Weitere Messungen sollen Empfindlichkeit verbessern

Die Co-Sprecher und Analyse-Koordinatoren von KATRIN beschreiben die kommenden Ziele: „Die weiteren Messungen zur Neutrinomasse werden noch bis Ende 2024 andauern. Um das volle Potential dieses einzigartigen Experiments auszuschöpfen, werden wir nicht nur die Statistik der Signalereignisse kontinuierlich erhöhen; wir entwickeln und installieren fortwährend Verbesserungen zur weiteren Absenkung der Störereignisrate“.

Dabei spielt die Entwicklung des neuen Detektorsystems TRISTAN, mit dem sich KATRIN ab 2025 auf die Suche nach „sterilen“ Neutrinos im Kiloelektronvolt-Massenbereich begeben soll, eine besondere Rolle. Solche sterilen Neutrinos wären Kandidaten für die mysteriöse Dunkle Materie, die sich schon in vielen astrophysikalischen und kosmologischen Beobachtungen manifestiert hat, deren teilchenphysikalische Natur aber noch immer unbekannt ist.

(*) 1 Elektronenvolt entspricht der unvorstellbar geringen Masse von ca. 1,8 x 10-36 Kilogramm

Wissenschaftliche Ansprechpartner:

Max-Planck-Institut für Physik
Prof. Dr. Susanne Mertens
mertens@mpp.mpg.de
+49 89 32354-590

Originalpublikation:

Direct neutrino-mass measurement with sub-eV sensitivity
KATRIN Collaboration
Nature Physics
DOI: 10.1038/s41567-021-01463-1

https://www.katrin.kit.edu/leicht-leichter-neutrinos.php

https://www.mpp.mpg.de/aktuelles/meldungen/neuer-weltrekord-experiment-katrin-grenzt-neutrinomasse-mit-bisher-unerreichter-praezision-ein

Media Contact

Barbara Wankerl Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…