Leben am Vulkan – in zwei Schritten zur Anpassung
Ein internationales Team unter der Leitung von Angela Hancock vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln (Deutschland) und Wissenschaftler:innen der Associação Projecto Vitó und des Parque Natural do Fogo (Kap Verde), der Universität Nottingham (Großbritannien) und der Universität Bochum (Deutschland) untersuchte eine Wildpopulation der Ackerschmalwand (Arabidopsis thaliana), die sich am Fuß eines Stratovulkans angesiedelt hatte. Die Studie, die in der Fachzeitschrift Science Advances veröffentlicht wurde, zeigt einen eindeutigen Fall der Anpassung in einer Wildpopulation mit weitreichenden Auswirkungen auf die Evolutionsbiologie und die Verbesserung von Kulturpflanzen.
Anpassung an eine neue Bodenumgebung
Die Nährstoffhomöostase ist entscheidend für ein gutes Pflanzenwachstum und damit von zentraler Bedeutung für die Produktivität von Nutzpflanzen. Die genetischen Veränderungen aufzudecken, die es den Pflanzen ermöglichen, unter neuen Bodenbedingungen zu gedeihen, bietet Einblicke in diesen wichtigen Prozess. Aufgrund der immensen Größe eines Genoms ist es jedoch eine Herausforderung, die spezifischen funktionellen Varianten zu identifizieren, die eine Anpassung ermöglichen.
Forschende des Teams konnten bereits zeigen, dass wilde Populationen der molekularen Modellpflanze Arabidopsis thaliana, die gemeinhin als Ackerschmalwand bezeichnet wird, die Kapverdischen Inseln von Nordafrika aus kolonisiert haben und sich durch neue Mutationen, die nach der Besiedlung der Inseln entstanden sind, angepasst haben. Hier konzentrieren sich die Forschenden auf die Ackerschmalwand-Population der Insel Fogo, die am Fuße des Pico de Fogo wächst, einem aktiven Stratovulkan. „Wir wollten wissen: Was braucht es, um am Fuße eines aktiven Vulkans zu leben? Wie haben sich die Pflanzen an den vulkanischen Boden auf Fogo angepasst?“, so Hancock.
„Was wir gefunden haben, war überraschend“, sagt Emmanuel Tergemina, Erstautor der Studie. „Während die Pflanzen von Fogo in ihrer natürlichen Umgebung gesund zu sein schienen, wuchsen sie auf normaler Blumenerde schlecht.“ Die chemische Analyse der Fogo-Erde ergab, dass sie einen erheblichen Mangel an Mangan aufwies, einem Element, das für die Energieproduktion und das Wachstum der Pflanzen entscheidend ist. Im Gegensatz dazu enthielten die Blätter von Fogo-Pflanzen, die in normaler Blumenerde gezüchtet wurden, hohe Manganwerte. Dies deutet darauf hin, dass die Pflanzen einen Mechanismus entwickelt hatten, um die Manganaufnahme zu erhöhen.
In zwei Evolutionsschritten zu einer neuen Anpassung
Die Wissenschaftlerinnen und Wissenschaftler nutzten eine Kombination aus genetischer Kartierung und Evolutionsanalyse, um die molekularen Schritte zu entdecken, die es den Pflanzen ermöglichten, den manganarmen Boden auf Fogo zu kolonisieren.
In einem ersten Evolutionsschritt wurde durch eine Mutation das primäre Eisentransportgen (IRT1) unterbrochen und damit seine Funktion ausgeschaltet. Die Unterbrechung dieses Gens in einer natürlichen Population war insofern bemerkenswert, als dieses Schlüsselgen in allen anderen weltweiten Populationen der Ackerschmalwandart intakt ist – anderswo gibt es keine derartigen Unterbrechungen. Außerdem deuten die Muster der genetischen Variation in der Genomregion von IRT1 darauf hin, dass die gestörte Version von IRT1 für die Anpassung wichtig war. Die evolutionäre Rekonstruktion zeigt, dass die Mutation in der gesamten Fogo-Population schnell fixiert wurde, so dass heute alle Ackerschmalwandpflanzen auf Fogo diese Mutation tragen. Mithilfe von Gen-Editing-Technologie (CRISPR-Cas9) untersuchten die Forschenden die funktionellen Auswirkungen der Störung von IRT1 in Fogo und stellten fest, dass die Mangananreicherung im Blatt erhöht wird, was seine Rolle bei der Anpassung erklären könnte. Der Verlust des IRT1-Transporters hatte jedoch einen Preis: Er führte zu einem starken Rückgang von Eisen im Blatt.
In einem zweiten Evolutionsschritt wurde das Metalltransporter-Gen NRAMP1 in mehreren parallelen Vorgängen verdoppelt. Diese Verdoppelungen verbreiteten sich rasch, so dass heute fast alle Ackerschmalwandpflanzen auf Fogo mehrere Kopien von NRAMP1 in ihrem Genom tragen. Die Verdoppelungen verstärken die Funktion des NRAMP1-Gens, erhöhen den Eisentransport und kompensieren den durch die Störung von IRT1 verursachten Eisenmangel. Außerdem erfolgte die Verstärkung durch mehrere unabhängige Verdopplungsereignisse in der gesamten Inselpopulation. Dies war angesichts der kurzen Zeit seit der Kolonisierung (etwa 5000 Jahre) und des Fehlens ähnlicher Ereignisse in anderen weltweiten Populationen unerwartet. „Der rasche Anstieg der Häufigkeit dieser Verdoppelungen zusammen mit ihrer positiven Wirkung auf die Nährstoffhomöostase deutet darauf hin, dass sie für die Anpassung wichtig waren“, erklärte Hancock. „Insgesamt sind unsere Ergebnisse ein deutliches Beispiel dafür, wie einfache genetische Veränderungen die Nährstoffverarbeitung in Pflanzen neu vernetzen und die Anpassung an eine neue Bodenumgebung ermöglichen können.“
Auswirkungen auf die Verbesserung von Kulturpflanzen
Die Ergebnisse dieser Studie sind auch für die Pflanzenzüchtung eine gute Nachricht. Bisher wurden Informationen über die Funktion von Genen durch Studien an einzelnen Mutantenlinien gewonnen. Durch die Nutzung der in der Natur vorhandenen Variation ist es jedoch möglich, komplexere mehrstufige Prozesse aufzudecken, die zu Veränderungen bei landwirtschaftlich relevanten Merkmalen führen können. „Die Entdeckung, dass in diesem Fall ein einfacher zweistufiger Prozess den Nährstofftransport verändert, kann Anhaltspunkte für Ansätze zur Verbesserung von Kulturpflanzen bieten, die besser an die lokale Bodenumgebung angepasst sind. Darüber hinaus gehören die Unterbrechung und Verstärkung von Genen, wie im Fall von IRT1 und NRAMP1 in Fogo, zu den einfachsten genetischen Veränderungen, die man vornehmen kann. Das macht sie besonders interessant, da sie leicht auf andere Arten übertragbar sein könnten“, schloss Tergemina.
Wissenschaftliche Ansprechpartner:
Dr. Angela Hancock
Max-Planck-Institut für Pflanzenzüchtungsforschung
Email: hancock@mpipz.mpg.de
Phone: +49 221 5062 285
Originalpublikation:
Media Contact
Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz
Dieser Themenkomplex befasst sich primär mit den Wechselbeziehungen zwischen Organismen und den auf sie wirkenden Umweltfaktoren, aber auch im weiteren Sinn zwischen einzelnen unbelebten Umweltfaktoren.
Der innovations report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Klimaschutz, Landschaftsschutzgebiete, Ökosysteme, Naturparks sowie zu Untersuchungen der Leistungsfähigkeit des Naturhaushaltes.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…