Temperaturbeständige Leistungshalbleiter aus dem 3D-Drucker
Forscherinnen und Forschern der Fakultät für Elektrotechnik und Informationstechnik der TU Chemnitz gelang erstmals der 3D-Druck und das nachfolgende Sintern von Gehäusen für leistungselektronische Bauelemente.
Forscherinnen und Forschern der Professur Elektrische Energiewandlungssysteme und Antriebe an der Technischen Universität Chemnitz ist erstmals der 3D-Druck von Gehäusen für leistungselektronische Bauelemente gelungen, die etwa zur Ansteuerung elektrischer Maschinen dienen. Dabei werden während des Druckvorgangs Silziumcarbid-Chips an einer dafür vorgesehenen Stelle der Gehäuse positioniert.
Wie schon bei ihrem gedruckten Motor aus Eisen, Kupfer und Keramik, den die Professur erstmals 2018 auf der Hannover Messe präsentierte, kommen auch beim 3D-Druck der Gehäuse keramische und metallische Pasten zum Einsatz. „Diese werden nach dem Druckvorgang, zusammen – und das ist das Besondere daran – mit dem eingedruckten Chip gesintert“, sagt Prof. Dr. Ralf Werner, Inhaber der Professur Elektrische Energiewandlungssystem und Antriebe. Keramik diene dabei als Isolationsmaterial und Kupfer werde zur Kontaktierung der Gate-, Drain- und Source-Flächen der Feldeffekttransistoren verwendet. „Besonders anspruchsvoll war die Kontaktierung der Gate-Fläche, die im Normalfall weniger als einen Millimeter Kantenlänge aufweist“, fügt Prof. Dr. Thomas Basler, Leiter der Professur Leistungselektronik, hinzu, dessen Team das Projekt mit ersten Funktionstests an Prototypen unterstützte.
Nach den an der TU Chemnitz gedruckten keramisch isolierten Spulen, die bereits 2017 auf der Hannover Messe vorgestellt wurden, und dem gedruckten Motor stehen nun auch Antriebskomponenten zur Verfügung, die Temperaturen über 300 °C aushalten. „Der Wunsch nach einer temperaturbeständigeren Leistungselektronik war naheliegend, denn die Gehäuse für leistungselektronische Bauelemente werden traditionell möglichst nahe am Motor installiert und sollten daher über eine ebenso große Temperaturbeständigkeit verfügen“, so Prof. Werner.
Ein Forschungsteam um Johannes Rudolph, der das 3D-Druckverfahren mitentwickelt hat, stellte in den vergangenen Monaten mehrere Prototypen der additiv paketierten Leistungshalbleiter auf Siliziumcarbid-Basis her. „Neben der hervorragenden Temperaturbeständigkeit bietet diese Technologie noch weitere Vorteile“, so Rudolph. Zum einen versprechen sich die Wissenschaftlerinnen und Wissenschaftler durch die beidseitige, flächige und lotfreie Kontaktierung der Chips eine längere Lebensdauer hinsichtlich der Anzahl der Lastwechselzyklen sowie eine bessere Kühlung und damit Ausnutzbarkeit der Chips. „Aufgrund der im Vergleich zu Kunststoffen höheren thermischen Leitfähigkeit der Keramik und der für den 3D-Druck üblichen Designfreiheit lassen sich leicht speziell angepasste Kühlgeometrien im Gehäuse und an dessen Oberfläche realisieren“, versichert Rudolph. Zudem sei so zur Herstellung eines leistungselektronischen Bauelements nach der Produktion der Siliziumcarbid-Chips selbst nur ein einziger Arbeitsschritt notwendig.
Johannes Rudolph und sein Team wollen das Verfahren zur Marktreife weiterentwickeln. Potentielle Kooperationspartner sind willkommen daran mitzuwirken, beispielsweise im Rahmen gemeinsamer Forschungsprojekte.
Wissenschaftliche Ansprechpartner:
Johannes Rudolph, Telefon 0371 531-38938, E-Mail johannes.rudolph@etit.tu-chemnitz.de
Weitere Informationen:
https://www.tu-chemnitz.de/etit/ema/AMMM/index.php – Homepage zum Thema „3D-Multimaterialdruck“
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…