Klebstofffreie Faser-zu-Chip-Anbindung

Mit dem CO2-Laserschweißen werden zuverlässige Faserkopplungen für die Medizintechnik geschaffen.
Fraunhofer IZM

… durch direktes Laserschweißen für die integrierte Photonik.

Aufbau- und Verbindungsstrategien von optischen Glasfasern mit photonischen integrierten Schaltkreisen (PICs) werden üblicherweise mit Klebstoffen realisiert. Doch diese Verbindungstechnik kann langfristig zu optischer Degradation und Übertragungsverlusten führen, welche für Anwendungen in der Medizintechnik oder Life Science, fatal sind. Im Eurostars-Projekt „PICWeld“ entwickelten Forschende des Fraunhofer IZM mit Partnern ein klebstofffreies und robustes Laserschweißverfahren zur Fixierung von Glasfasern an PICs. Mit der Integration des Verfahrens in eine automatisierte Justageanlage wurde die industrielle Reife des Systems gezeigt.

Schon lange ist bekannt, dass biochemische Prozesse von Organfunktionen über die Temperaturregulierung bis hin zur Hormonproduktion maßgeblich von Licht beeinflusst werden. Inzwischen ist die Forschung rund um Licht und Körper weit vorangeschritten, junge Disziplinen wie die Life Science und Biophotonik beschäftigen sich mit Fragen, die sich am Schnittpunkt der Naturwissenschaften und Medizin befinden. Mit hochpräzisen und komplexen Messungen können damit Informationen darüber gewonnen werden, wie sich die Wechselwirkungen zwischen Licht und Materie gestalten, zum Beispiel bei der Untersuchung der Struktur von Zellen und Geweben, die für Krebserkrankungen relevant sind.

Doch Einblicke in das Innerste zu erhalten, ist kein leichtes Unterfangen: Kürzlich wurden miniaturisierte Systeme basierend auf photonisch integrierten Schaltkreisen mit hochstabilen Faserverbindungen vorgeschlagen, um die Rolle des sichtbaren Lichts in biologischen Prozessen nachvollziehen zu können. Genau an dieser Stelle setzte das Fraunhofer IZM im BMBF-geförderten Eurostars-Projekt „PICWeld“ an und entwickelte ein gänzlich neuartiges Laserschweißverfahren, mit dem optische Fasern direkt mit PICs auf Quarzglas verschweißt werden können. Mit Hilfe des Partners ficonTEC Service GmbH wurde dieses Verfahren in einer automatischen Anlage umgesetzt, die eine hohe Reproduzierbarkeit und Skalierbarkeit bietet.

Das Forschungsteam rund um Dr. Alethea Vanessa Zamora Gómez hat es sich zur Aufgabe gemacht, Glas-Glas-Verbindungen einfacher, robuster und langlebiger aufzubauen. Solche Verbindungen werden in der Fachwelt der Optik bereits genutzt, jedoch weisen konventionelle Lösungen einen erheblichen Nachteil auf: Zumeist werden die diskreten optischen Bauteile mit einem Klebstoff verbunden. Durch die Weichheit des Klebstoffs kann sich die Position des Bauteils über die Zeit ändern, zudem stellt er eine Störstelle zwischen den beiden Glasschichten dar, die eine Dämpfung des Signals verursacht und nach Alterung des Klebstoffs brüchig werden kann. Die Langzeitstabilität ist daher oft kritisch. Um diese Nachteile der Verbindungstechnik zu umgehen, haben die Forschenden einen Prozess des CO2-Laserschweißens entwickelt und realisieren damit erstmals eine direkte, thermisch robuste und transparente Glas-Glas-Verbindung.

Um das Laserschweißen für zuverlässige Quarzglasverbindungen jedoch nicht nur experimentell durchzuführen, sondern der Industrialisierung und hohen Skalierbarkeit einen Schritt näher zu kommen, wurde eine gänzlich neue, automatisierte Prozessanlage entworfen und hergestellt.

Die entstandene Anlage ermöglicht eine im Interface klebstofffreie und polarisationserhaltende, hocheffiziente Kopplung zwischen optischen Quarzglas-Fasern und Quarzglas-PICs mit integrierten Wellenleitern. Doch bis zur Umsetzung anwendungstauglicher Verbindungen mussten die Forschenden eine Reihe technologischer Herausforderungen bewältigen. Da Glasfasern und Substrate unterschiedliche Volumina haben, sind auch die Wärmekapazitäten der beiden Fügepartner ungleich. Diese Diskrepanz resultiert in einem stark unterschiedlichen Aufheiz- und Abkühlverhalten, was z. B. zu Deformationen oder Rissen beim Abkühlen führen kann. Die Lösung der Photonik-Expert*innen lag darin, das Substrat mittels eines separaten und individuell anpassbaren Lasers homogen vorzuheizen, so dass die Schmelzphase der Faser und des Substrats dennoch gleichzeitig erreicht wird.

Die Anlage, die mit thermischer Prozessüberwachung bis 1300 °C, einem bis auf 1 µm genauen Positioniersystem, einem Bilderkennungsverfahren sowie einer Steuerungssoftware ausgestattet ist, schweißte bereits im Laufe des Projekts erste Verbindungen, so dass die Funktionsfähigkeit getestet und erste prozessorientierte Messungen durchgeführt wurden.

Nach dem PICWeld-Abschluss im Jahr 2021 ergaben sich nahtlos erste Folgeprojekte, in denen die neue Technologie zum Faserkoppeln von Kollimatoren, Wellenleiterchips und Multilinsenarrays genutzt wurde. „Mit unserer Anlage zum CO2-Laserschweißen haben wir das bisherige Verfahrensprinzip erweitert: Insbesondere das hohe Automatisierungspotenzial ermöglicht es den Kund*innen, PICs mit höchster Kopplungseffizienz zu verwenden. In der Industrie integriert, bedeutet das einen Sprung für die Anwendungsbereiche der Biophotonik, aber auch der Quantenkommunikation und Hochleistungsphotonik“, erklärt die Projektleiterin am Fraunhofer IZM, Dr. Alethea Vanessa Zamora Gómez.

Der Beitrag des Fraunhofer IZM in PICWeld wurde gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) mit dem Förderkennzeichen 01QE1744C. Es gehört zum Eurostars-Programm (11324), in dessen Rahmen eine Zusammenarbeit mit Lionix International BV, Phix Photonics Assembly und ficonTEC Service GmbH erfolgt ist.

Wissenschaftliche Ansprechpartner:

Dr. Alethea Vanessa Zamora Gómez l Telefon +49 30 46403-7995 l Alethea.Vanessa.Zamora.Gomez@izm.fraunhofer.de |
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM I Gustav-Meyer-Allee 25 | 13355 Berlin | www.izm.fraunhofer.de |

Originalpublikation:

https://www.izm.fraunhofer.de/de/news_events/tech_news/klebstofffreie-faser-zu-c…

Media Contact

Georg Weigelt Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…