Eine Quantenwelle in zwei Kristallen

Michael Jentschel, Carlo Paolo Sasso, Enrico Massa and Hartmut Lemmel (v.l.n.r.)
Michael Jentschel, ILL

Durchbruch in der Neutronenphysik:

Einem Team von TU Wien, INRIM Turin und ILL Grenoble gelang es nun erstmals, aus zwei getrennten Kristallen ein Neutronen-Interferometer zu bauen.

Die Geschichte der Neutroneninterferometrie begann 1974 in Wien. Helmut Rauch, langjähriger Professor am Atominstitut der TU Wien, stellte aus einem Silizium-Kristall das erste Neutronen-Interferometer her und konnte am Wiener TRIGA-Reaktor die ersten Interferenzen mit Neutronen beobachten. Wenige Jahre später konnte die TU Wien an der weltstärksten Neutronenquelle, dem Institut Laue-Langevin (ILL) in Grenoble, die permanente Interferometriestation S18 einrichten, die bis heute besteht.

„Das Prinzip des Interferometers ähnelt dem berühmten Doppelspaltexperiment, bei dem ein Teilchen wellenartig auf einen Doppelspalt geschossen wird, als Welle beide Spalte gleichzeitig durchdringt und sich dann mit sich selbst überlagert, sodass danach am Detektor ein charakteristisches Wellenmuster entsteht“, erklärt Hartmut Lemmel vom Atominstitut der TU Wien.

Doch während beim Doppelspaltexperiment die beiden Spalte nur einen minimalen Abstand voneinander entfernt sind, teilt man die Teilchen im Neutroneninterferometer in zwei verschiedene Pfade auf, zwischen denen mehrere Zentimeter liegen. Die Teilchenwelle erreicht eine makroskopische Größe – trotzdem entsteht durch Überlagerung der beiden Pfade ein Wellenmuster, das eindeutig beweist: Das Teilchen hat sich nicht für einen der beiden Pfade entschieden, es hat beide Pfade gleichzeitig benutzt.

Jede Störung zerstört das Ergebnis

Doch solche Quanten-Überlagerungen sind äußerst fragil. „Winzige Ungenauigkeiten, Vibrationen, Verschiebungen oder Rotationen zerstören den Effekt“, sagt Hartmut Lemmel vom Atominstitut der TU Wien. „Daher fräst man normalerweise das gesamte Interferometer aus einem einzigen Kristall heraus.“ In einem Kristall sind alle Atome miteinander verbunden und haben eine feste räumliche Beziehung zueinander – so kann man den Einfluss der äußeren Störungen auf die Neutronenwelle minimieren.

Das schränkt aber die Möglichkeiten der Neutroneninterferometrie stark ein, denn Kristalle kann man nicht in beliebiger Größe herstellen. „Schon in den 1990erjahren versuchte man daher, Neutroneninterferometer aus zwei Kristallen herzustellen, die dann in größerem Abstand voneinander positioniert werden können“, sagt Lemmel. „Doch das glückte nicht. Die Schwierigkeit daran ist, dass man die beiden Kristalle ganz exakt gegeneinander ausrichten muss.“

Extreme Genauigkeit

Die Anforderungen an die Genauigkeit sind extrem: Schon eine Verschiebung des Kristalls um die Distanz eines Atomdurchmessers verschiebt die Phase der Interferenz um eine volle Periode. Und wenn einer der Kristalle um einen Winkel in der Größenordnung von einem Hundertmillionstel Grad verdreht ist, verschwindet das Interferenzmuster ganz. Die nötige Winkelpräzision entspricht etwa der Präzision, mit der man ein von Wien nach Grenoble geschossenes Teilchen kontrollieren müsste, um dort in knapp 900 Kilometern Entfernung eine Stecknadel zu treffen – oder von der Erde aus einen Kanaldeckel auf dem Mond.

Das Istituto Nazionale di Ricerca Metrologica (INRIM) in Turin brachte die dafür nötige Erfahrung mit, die es auf dem Gebiet der Röntgeninterferometrie über Jahrzehnte hinweg gesammelt hatte. Auch Röntgeninterferometer bestehen aus Siliziumkristallen die ähnlich empfindlich sind. Die Empfindlichkeit gegenüber der räumlichen Verschiebung eines Kristalls wurde in Turin dafür genutzt, die Gitterkonstante von Silizium mit bisher unerreichter Genauigkeit zu bestimmen. Dadurch wurde es möglich, die Atome einer makroskopischen Siliziumkugel zu zählen, die Avogadro- und die Planck-Konstante zu bestimmen und das Kilogramm neu zu definieren.

„Was mit Röntgenstrahlen funktioniert, sollte doch auch mit Neutronen möglich sein“, sagt Enrico Massa vom INRIM, „auch wenn die Anforderungen mit Neutronen noch höher sind.“ Mit einem zusätzlich eingebauten Laser-Interferometer, Vibrationsdämpfung und Temperaturstabilisierung ist es der Kollaboration jetzt schließlich gelungen, Neutroneninterferenz in einem System aus zwei voneinander getrennten Kristallen nachzuweisen.

Wichtige Grundlagenforschung

„Das ist für die Neutroneninterferometrie ein ganz entscheidender Durchbruch“ sagt Michael Jentschel vom ILL. „Denn wenn man zwei Kristalle so gut kontrollieren kann, dass Interferometrie möglich wird, dann kann man auch den Abstand zwischen diesen Kristallen erhöhen und somit recht einfach die Größe des Gesamtsystems erweitern.“

Diese Gesamtgröße bestimmt bei vielen Experimenten die Genauigkeit, die man bei der Messung erreichen kann. Man kann nun fundamentale Wechselwirkungen mit bisher unerreichter Genauigkeit untersuchen – etwa den Einfluss von Gravitation auf Neutronen im Quantenbereich oder die Existenz von hypothetischen neuen Naturkräften.

Wissenschaftliche Ansprechpartner:

Michael Jentschel
ILL Grenoble
+33 47620 7052
jentschel@ill.fr

Originalpublikation:

H. Lemmel, M. Jentschel, H. Abele, F. Lafont, B. Guerard, C.P. Sasso, G. Mana, E. Massa – Neutron interference from a split-crystal interferometer, J. Appl. Cryst. 55, (2022).

https://www.tuwien.at

Media Contact

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…