Achema 2022: KI trifft Partikeltechnologie, um Vorhersagen zu Fließfähigkeit und Packungsdichte zu vereinfachen
Runde Partikel und ihre Eigenschaften sind mathematisch einfach zu beschreiben. Doch je weniger rund bzw. sphärisch die Form, desto schwerer wird es, Vorhersagen zu deren Verhalten zu treffen. Etwa, wenn ein Pharmahersteller wissen möchte, wie sich eine andere Tablettenform auf die benötigte Verpackungsgröße auswirkt. Robert Hesse hat in seiner Doktorarbeit an der Technischen Universität Kaiserslautern (TUK) eine Lösung entwickelt, konkret ein neuronales Netz trainiert, um Packungsdichte und Fließfähigkeit von nicht-sphärischen Partikeln automatisiert zu bestimmen. Seine Idee präsentiert er vom 22. bis 26. August auf der Achema am Forschungsstand Rheinland-Pfalz (Stand A35, Halle 6).
Nur wenige Partikel in der Natur oder in der industriellen Fertigung sind exakt rund, sondern es gibt eine Vielzahl an Varianten und Formcharakteristiken. Genau das macht es so kompliziert, nicht-sphärische Partikel zu beschreiben und basierend auf der Beschreibung deren Handhabung zu optimieren. Ein Beispiel: Je runder eine Tablette ist, desto weniger verhakt sie sich mit anderen Tabletten im Abfüllprozess. Eine flache zylindrische Form kann bereits durch leichte Abrundungen optimiert werden, wenn es um die Packungsdichte geht.
Doch wie lassen sich all die Eigenschaften, die Fließfähigkeit und Packungsdichte bestimmen, schnell erfassen, um Entscheidungen zur Wahl einer Form abzuleiten? Was bislang vereinfachte Berechnungen einzelner mathematischer Parameter bzw. Formbestandteile erforderte, kann eine trainierte Künstliche Intelligenz – in dem Fall ein sogenanntes „Deep Convolutional Neural Network“ – anhand eines 3D-Modells automatisiert ableiten. „Über Simulationen, bei denen nur die Form der Partikel variierte, habe ich einen umfassenden Versuchsdatensatz erstellt und damit das neuronale Netz trainiert“, berichtet Hesse, wissenschaftlicher Mitarbeiter am Lehrstuhl für Mechanische Verfahrenstechnik. „Standardisierte Experimente mit 3D-gedruckten Partikeln ermöglichten in der Erprobungsphase die Validierung der Simulationsmethodik– sprich abzugleichen, wie exakt die Simulation echte Partikel abbilden kann.“
Das trainierte neuronale Netz filtert nun aus einer beliebigen dreidimensionalen Punktewolke, die die gesamte Form repräsentiert, markante Merkmale wie Rundungen, Ecken, Kanten usw. heraus. Anhand dieser Informationen kann es die Fließfähigkeit und zufällige Packungsdichte analysieren. „Dies ist beispielsweise hilfreich, um die Form pharmazeutischer Produkte hinsichtlich minimaler Maschinendimensionen und Verpackungsgrößen zu optimieren“, sagt der Forscher.
Auf der Achema gibt Hesse interessierten Besuchern anhand einer Posterpräsentation Einblick in seine Forschung und die Fähigkeiten des neuronalen Netzwerkes.
Fragen beantwortet:
Robert Hesse (M.Sc.)
Lehrstuhl für Mechanische Verfahrenstechnik
Tel.: 0631 205-2416
E-Mail: robert.hesse@mv.uni-kl.de
Der Auftritt der Forscherinnen und Forscher der TU Kaiserslautern bei der Achema wird von Klaus Dosch vom Referat für Technologie und Innovation organisiert. Er ist Ansprechpartner für Unternehmen und vermittelt unter anderem Kontakte zur Wissenschaft.
Kontakt: Klaus Dosch, E-Mail: dosch@rti.uni-kl.de, Tel.: 0631 205-3001
Media Contact
Alle Nachrichten aus der Kategorie: Messenachrichten
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…