Das Erwecken des Genoms

Der Pionierfaktor Nr5a2 (rot) bindet an die noch inaktive, um Histone (grau) gewickelte DNA, einer befruchteten Eizelle. So weckt er das Genom auf. Jetzt können Gene abgelesen werden, die für die Entwicklung eines Embryos notwendig sind.

Illustration: Max Iglesias / MPI für Biochemie

Die Befruchtung einer Eizelle durch ein Spermium ist der Beginn neuen Lebens.

Die mütterliche und väterliche Erbinformation, die DNA, wird neu kombiniert und speichert den Aufbau des Lebewesens. Sie liegt nach der Befruchtung noch inaktiv im Zellkern vor. Während die erste Teilung der befruchteten Eizelle noch mit Hilfe der in der Eizelle eingelagerten mütterlichen Faktoren funktioniert, ist für die weitere Entwicklung eines Embryos die Synthese neuer embryonaler Produkte notwendig, was den Zugang zur DNA des Embryos erfordert. Kikuë Tachibana und ihr Team am MPI für Biochemie haben nun gezeigt, dass der Pionierfaktor Nr5a2 die embryonale DNA aufweckt. Die Studie wurde in Science publiziert.

Drei der vier Erstautoren der aktuellen Studie, zusammen mit MPIB-Direktorin Kikuë Tachibana (v.l.n.r. Wataru Kobayashi, Siwat Ruangroengkulrith, Johanna Gassler, Kikuë Tachibana).
Foto: C. Menzfeld, MPI für Biochemie

Der Beginn des Lebens ist ein faszinierender Vorgang in der Biologie. Die weibliche Eizelle wird durch Verschmelzung mit der männlichen Samenzelle befruchtet. Aus dieser ersten Zelle eines Embryos kann sich der gesamte Organismus entwickeln. Welche molekularen Prozesse finden in einer befruchteten Eizelle statt, damit diese Zelle das Potenzial hat, einen neuen Organismus hervorzubringen? Kikuë Tachibana, Direktorin am MPIB und Leiterin der Forschungsabteilung „Totipotenz“, geht dieser Frage zusammen mit ihrem Forschungsteam am Mausmodell nach.

Es ist bekannt, dass so genannte Pionierfaktoren an bestimmte Bereiche der inaktiven DNA binden, um sie zu aktivieren. Herauszufinden, welche Faktoren dies im Falle befruchteter Eizellen sind, war Gegenstand der aktuellen Studie. Für diese Forschung bedurfte es einer multidisziplinären Anstrengung der vier Erstautoren und ihrer sich ergänzenden Expertise. „Das Kernteam dieser Arbeit besteht aus Experten für Embryologie, Biochemie, Bioinformatik, Mikroskopie und Genomik. Nur gemeinsam waren wir in der Lage, Hinweise im Genom zu finden, den Transkriptionsfaktor Nr5a2 zu entdecken und den Mechanismus innerhalb und außerhalb der Zellen zu untersuchen“, sagt Tachibana.

Von der DNA zum Protein

Die Grundbausteine der DNA − Adenosin, Thymin, Guanin und Cytosin − kodieren wie in einer Bibliothek die Baupläne für alle im Organismus vorkommenden Proteine. Durch einen Prozess der Transkription werden bestimmte DNA-Abschnitte, auch Gene genannt, abgelesen und in Boten-RNA (mRNA) umgeschrieben. Anschließend werden auf der Grundlage der mRNA-Anleitung Proteine hergestellt. Anhand dieser molekularen Anleitungen werden unter anderem zelluläre Strukturen, Kanäle, Signalmoleküle oder molekulare Maschinen gebaut.

Siwat Ruangroengkulrith, Molekularbiologe und Bioinformatiker, erklärt: „Die genetische Information ist im Zellkern nicht einfach frei zugänglich. Sie liegt in Form eines langen DNA-Fadens vor, der wie eine Perlenkette um kleine Verpackungsproteine, die so genannten Histone, gewickelt ist. DNA und Histone sind so ineinander verdreht, dass der DNA-Faden bis zu 40.000-fach verkürzt ist. Das ist der Grund, warum wir die DNA unter dem Mikroskop als Chromosomen sehen können.“

Pionierfaktor Nr5a2

Pionierfaktoren haben die Fähigkeit, an dicht gepackte DNA zu binden. Sie gehören zu der großen Familie der Transkriptionsfaktoren. Sie binden an bestimmte Sequenzmuster auf der DNA, um das Ablesen der Gensequenz zu starten. Imre Gáspár, Experte für Mikroskopie und Bioinformatik, erklärt: „Wir haben nach einem gemeinsamen Sequenzmuster für die im frühen Stadium hergestellten mRNA-Moleküle gesucht und konnten mehrere Sequenzmotive finden. Die entdeckten Motive liegen nahe beieinander und bilden ein sogenanntes Supermotiv. Das neu entdeckte Supermotiv ähnelt dem bekannten Sequenzmotiv SINE B1-Element und ist sehr eng mit dem hochkonservierten ALU-Element im menschlichen Genom verwandt. Diese Elemente werden auch als ’springende Gene‘ bezeichnet, da sie sich in bestimmten Zellstadien, z. B. im frühen Embryo, von einer Position zu einer anderen Position im Genom bewegen können.“

An dieses Supermotiv bindet Nr5a2. Johanna Gassler, Embryologin, erklärt: „Ursprünglich wurde Nr5a2 in der Leber entdeckt. Im Bereich der Entwicklungsbiologie wusste man bislang über Nr5a2, dass er in der späten Phase der Einnistung des Embroys in die Gebärmutter wichtig ist. Wie wichtig Nr5a2 direkt nach der Befruchtung ist, war noch nicht bekannt. In unseren Experimenten konnten wir zeigen, dass der Großteil der frühen embryonalen mRNA-Moleküle nicht mehr produziert wird, wenn Nr5a2 blockiert wird. Außerdem werden die Embryonen in ihrer weiteren Entwicklung gehemmt. Dies zeigt, dass Nr5a2 eine zentrale Rolle in der frühesten Phase der Embryonalentwicklung spielt.“

Mit modernsten biochemischen und genomischen Methoden haben die Forscher untersucht, wie Nr5a2 während der frühen Entwicklung funktioniert. Wataru Kobayashi, Biochemiker, erklärt: „Wir haben experimentell gezeigt, dass Nr5a2 inaktive DNA-Regionen öffnen kann, wodurch Bereiche der DNA für nachfolgende Transkriptionsprozesse zugänglich werden.“ Auf diese Weise wird das Genom im Zweizellstadium aktiviert, und ein Embryo und schließlich ein voll lebensfähiger Organismus können sich entwickeln.

Tachibana blickt in die Zukunft: „Die Entdeckung, dass Nr5a2 ein Schlüsselfaktor für das Erwachen des Genoms ist, ist ein wichtiger Schritt auf dem Weg zu einem mechanistischen Verständnis des Beginns des Lebens. Es ist aber auch klar, dass es noch andere Faktoren geben muss, die dazu beitragen und die noch identifiziert werden müssen. Diese Arbeit liefert uns jetzt einen konzeptionellen Rahmen ‚ex uno plura‘ (lat. viele aus einem), der erklären kann, wie die Transkriptionsaktivierung in frühen Embryonen robust erfolgt, um die Entwicklung zu einem ganzen Organismus zu gewährleisten.“

Wissenschaftliche Ansprechpartner:

Kikuë Tachibana, Ph.D.
Abteilung Totipotenz
Max-Planck-Institut für Biochemie
tachibana@biochem.mpg.de

Originalpublikation:

J. Gassler*, W. Kobayashi*, I. Gáspár*, S. Ruangroengkulrith*, A. Mohanan, L. Gomez Hernandez, P. Kravchenko, M. Kümmecke, A. Lalic, N. Rifel, R. J. Ashburn, M. Zaczek, A. Vallot, L. Cuenca Rico, S. Ladstätter, K. Tachibana#: Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science, November 2022

* gemeinsame Erstautoren
# korrespondierende Autorin

http://www.biochem.mpg.de/

Media Contact

Dr. Christiane Menzfeld Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Muster mikrobieller Evolution im See Mendota, analysiert mit Metagenom-Daten und saisonalen Einblicken.

Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln

Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…

Mueller-Matrix-Polarimetrie-Technik zur Bewertung der Achillessehnenheilung.

Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne

Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…

Echtzeit-Genetische Sequenzierung zur Überwachung neuer Pathogene und Infektionsvarianten

Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten

Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….