Historischer Durchbruch in der Fusionsforschung
Laser haben die Kernfusion gezündet!
Laser haben einen Mini-Stern auf der Erde gezündet und damit den Grundstein für eine saubere Energiequelle der Zukunft gelegt: Ein historischer Durchbruch in der Trägheitseinschluss-Fusionsforschung an der National Ignition Facility im Lawrence Livermore National Lab und ein entscheidender Moment für die Photonik!
Eine der vielversprechendsten Anwendungen der Lasertechnologie, die Realisierung der lasergetriebenen Fusion, hat einen historischen Durchbruch erzielt. Wie das Lawrence Livermore National Laboratory (LLNL, Kalifornien, USA) in seiner Pressemitteilung vom 13. Dezember 2022 bekannt gab, konnten amerikanische Wissenschaftler an der National Ignition Facility (NIF) eine Fusionsenergie von 3,15 Megajoule (MJ) aus einem mit den Wasserstoffisotopen Deuterium und Tritium gefüllten Pellet freisetzen. Dies entspricht 154 Prozent der verbrauchten Energie von 2,05 MJ des Laserpulses, der die Explosion ausgelöst hat. Dieser Netto-Energiegewinn stellt den ersten international lang erwarteten Durchbruch in der Fusionsforschung dar. Für die High Energy Density Physics Mission des US-Energieministeriums bedeuten diese jüngsten FuE-Ergebnisse einen beispiellosen Aufwind. Sie schaffen die physikalische Grundlage für die Erzeugung einer effizienten, mit der Sonne vergleichbaren Energiequelle, die langfristig eine sinnvolle Ergänzung zu erneuerbaren Energien darstellt.
»Die Kraft der Sterne auf die Erde zu bringen, markiert einen Wendepunkt für die Menschheit, der die Aussicht auf eine saubere, reichhaltige, sichere und zuverlässige Energiequelle greifbar macht«, freute sich Professor Constantin Häfner, Leiter des Fraunhofer-Instituts für Lasertechnik ILT in Aachen, der selbst bis 2019 jahrelang als Leiter des Advanced Photon Technologies Program am NIF tätig war. »Dieser Durchbruch ist der Höhepunkt einer 60-jährigen wissenschaftlichen Reise, die darauf abzielt, eine der schwierigsten technischen Herausforderungen für die Menschheit zu lösen.«
Die Fusion von Wasserstoff zu Helium setzt immense Mengen an Energie frei
Bei dem neuen Meilenstein am NIF leiten riesige gepulste Laser die Energie von über 2 Millionen Joule UV-Licht präzise in einen ~1 cm langen goldbeschichteten Zylinder, den die Experten »Hohlraum« nennen. Dort werden durch die Wechselwirkung der Laserstrahlen mit den Innenwänden Röntgenstrahlen erzeugt. Diese verteilen sich dann im Hohlraum gleichmäßig wie in einem heißen Ofen. Ein etwa 2 Millimeter großes Kügelchen, das ein Gemisch aus den Wasserstoffisotopen Deuterium und Tritium enthält und in der Mitte des Hohlraums schwebt, absorbiert die sich ausbreitenden Röntgenstrahlen und heizt sich schnell auf. Die äußere Hülle des sogenannten Pellets wird abgesprengt, und der daraus resultierende Implosionsdruck komprimiert den Wasserstoffbrennstoff auf das Hundertfache der Dichte von fester Materie und bildet in seinem Zentrum einen heißen Punkt mit einer Temperatur von mehr als 120 Millionen Grad Celsius. Dies wiederum löst die Fusion von Wasserstoff zu Helium aus. Bei jeder Fusionsreaktion von zwei leichten Kernen werden pro Reaktion 17,6 MeV in Form von Neutronen und Alphateilchen freigesetzt. Die Alphateilchen werden sofort wieder vom Plasma absorbiert, wodurch es sich weiter aufheizt und eine sich selbst erhaltende Verbrennungswelle ausgelöst wird. Nach weniger als 100 Pikosekunden führen die hohe Temperatur und der enorme Druck dazu, dass sich der verbleibende Brennstoff ausdehnt und die Parameter unter den Schwellenwert für die Fusion, das so genannte Lawson-Kriterium, fallen. Dieser Effekt macht die Fusionsreaktion auch sicher, da keine kritische Kettenreaktion auftreten kann.
Im aktuellen Experiment wurden 2,05 MJ Laserenergie verwendet, um das Target zu komprimieren und zu erhitzen. Aufgrund von Ineffizienzen im Implosionsprozess wird nur ~1 Prozent der Energie an den heißen Punkt geliefert. Der durch die Fusionsreaktion ausgelöste thermische Durchbruch zündete das Plasma und erzeugte ~ 3,15 MJ Energie mit einer momentanen Leistung von etwa 52.500.000.000.000.000 Watt, deren Durchmesser weniger dick ist als ein Haar. Der entscheidende Fortschritt gegenüber früheren Ergebnissen wurde durch Daten aus früheren Experimenten und ein besseres Verständnis der Fusionsphysik ermöglicht, was dann zu Verbesserungen des Hohlraumdesigns, der Struktur des Brennstoffpellets und Modifikationen des Lasers und des Laserpulses führte.
Fusionsenergie: saubere und nahezu unerschöpfliche Energiequelle der Zukunft
Zur Erreichung des globalen Klimaziels, die Erderwärmung auf weniger als 2 Grad Celsius zu begrenzen, muss Deutschland bis 2045 treibhausneutral werden. Dies soll mit Hilfe eines massiven und raschen Ausbaus der erneuerbaren Energien von derzeit knapp 50 Prozent auf 100 Prozent bei der Stromerzeugung und dem vollständigen Verzicht auf fossile Energieträger in allen Endverbrauchssektoren durch Steigerung der Energieeffizienz und Nutzung aller Arten von erneuerbaren Energieträgern erreicht werden. Dadurch verringert sich die Abhängigkeit von der Einfuhr fossiler Brennstoffe kontinuierlich. Gleichzeitig wird aus erneuerbaren Ressourcen hergestellter Wasserstoff benötigt, um Energie aus Standorten mit hocheffizienter Sonnen- und Windenergienutzung zu speichern und zu transportieren. »Es wird erwartet, dass die weltweite Stromnachfrage in den kommenden Jahrzehnten stark ansteigen wird. Einerseits wird Strom zur wichtigsten Primärenergie, da er zunehmend auch für die Wärmeerzeugung in Gebäuden und Industrie sowie im Mobilitätssektor genutzt und in Wasserstoff und Wasserstoffderivate umgewandelt wird«, sagt Prof. Hans-Martin Henning, Leiter des Fraunhofer-Instituts für Solare Energiesysteme ISE und Vorsitzender des Sachverständigenrats für Klimafragen der Bundesregierung. »Andererseits wird Strom in noch deutlich größeren Mengen als heute für die Wasserentsalzung und langfristig wohl auch für die Entfernung von Kohlendioxid aus der Atmosphäre benötigt.«
Die Energiegewinnung durch Fusion könnte eine zusätzliche, nahezu unerschöpfliche, wetterunabhängige und vor allem ebenso emissionsfreie Energiequelle eröffnen. Allerdings ist die kontrollierte Fusion zur Energieerzeugung technisch äußerst anspruchsvoll; die Lösung der verbleibenden Herausforderungen und der Bau des ersten Fusionsdemonstrators werden eindeutig mehr als ein Jahrzehnt in Anspruch nehmen. Daher wird sie kurz- und mittelfristig nicht zu einer beschleunigten Reduzierung der Treibhausgasemissionen beitragen. Prof. Häfner, Beauftragter für Fusionsforschung der Fraunhofer-Gesellschaft, fügt hinzu: »Die Kernfusion ist eine Investition mit hohem Risiko und hoher Rendite und – wenn sie erfolgreich ist – der Heilige Gral für die Erlangung von Energiesouveränität und die langfristige Deckung des weltweiten Energiebedarfs. Jetzt ist es an der Zeit, die Segel zu setzen, um die Fusionsenergie ans Netz zu bringen, eine Reise, die sich über mehrere Jahrzehnte erstrecken wird. Vorausgesetzt, die Welt ist bereit, Investitionen zu tätigen und aufrechtzuerhalten.«
Die Dringlichkeit, Trägheitsfusion, englisch »inertial fusion energy« (IFE), zu demonstrieren und dann auf den Markt zu bringen, wird durch das rasch wachsende Interesse des Privatsektors an der Entwicklung der Fusionsenergie untermauert. Im März 2022 versammelte das Büro für Wissenschafts- und Technologiepolitik des Weißen Hauses der Vereinigten Staaten Industrie und Wissenschaft zu einem Gipfel, um eine kühne Dekadenvision für die kommerzielle Entwicklung der Fusionsenergie zu verkünden.
Eine wachsende Zahl von Start-ups auf der ganzen Welt befasst sich mit Aspekten der Technologieentwicklung, die noch benötigt werden. Derzeit sind über 30 Unternehmen in den Bereichen Magnetfusion, englisch »Magnetic confinement Fusion Energy« (MCF) und Magneto-Inertial-Technologien und 6 Unternehmen im Bereich IFE tätig. Die Gesamtinvestitionen sind nach Angaben der Fusion Industry Association von 1,8 Milliarden Dollar in den letzten zwei Jahren auf heute über 4,7 Milliarden Dollar gestiegen. Vier der Start-ups sind in Deutschland ansässig.
Gamechanger in der Lasertechnologie
Das jüngste IFE-Experiment stellt einen großen Erfolg für die Wissenschaft dar und ist ein Beweis für die Vielseitigkeit und Präzision von Lasern. Die 3,5 Milliarden Dollar teure NIF-Anlage beherbergt das weltweit energiereichste Lasersystem und das größte optische System der Welt, das mehr als 7500 meterlange Spezialoptiken umfasst, die Laserenergie erzeugen und auf das Ziel lenken. Die NIF-Anlage wird in der Regel einmal pro Tag gezündet; ein IFE-Demonstrator oder -Kraftwerk müsste 10-20 Mal pro Sekunde mit hohem Wirkungsgrad zünden. Alle Brennstoff-Target-Injektionssysteme, Abfallentsorgungssysteme und Laserkonzepte müssen Effizienz, Zuverlässigkeit, Wartungsfreundlichkeit und Betriebsfähigkeit demonstrieren; Architekturen und Technologien müssen zu fusionskraftwerkstauglichen Geräten ausgereift werden, während gleichzeitig die Produktions- und Betriebskosten gesenkt und die Lieferketten gesichert und aufgebaut werden. Die notwendigen Kostensenkungen, die oft mehrere Größenordnungen ausmachen, erfordern innovative und bahnbrechende Lösungen der Laser- und Optikindustrie.
»Nehmen wir an, dass wir im Jahr 2050 mehrere Fusionskraftwerke pro Jahr in Betrieb nehmen müssen, damit IFE zu unserer Stromversorgung beitragen kann. Das erfordert die Produktion von vielen hundert leistungsstarken Lasern in der Größe von Überseecontainern«, sagt Prof. Häfner. »Wir müssen die Laser- und Optikproduktion völlig neu denken und automatisierte Produktionslinien wie in der Automobilindustrie aufbauen, nur mit der Genauigkeit von wenigen optischen Wellenlängen.« Verstärkermedien, Optiken, Beschichtungen, Kristalle – all dies erfordert eine Massenproduktion zu niedrigen Kosten. Und es gibt noch viele weitere komplexe Probleme auf dem Weg zur Fusionsenergie zu lösen. Die Herausforderungen spornen jedoch zur Innovation an, und die Innovation zieht neue Lösungen auf anderen Märkten nach sich, so dass sich die Investitionen schnell amortisieren. Prof. Häfner bringt es auf den Punkt: »Die Fusionsenergie ist ein Unterfangen, bei dem viel auf dem Spiel steht, und als solches ist es eine gute Strategie, anzufangen und die vielversprechendsten Ansätze zu verfolgen. Das Rennen ist eröffnet.«
Wissenschaftliche Ansprechpartner:
Prof. Constantin Häfner
Institutsleiter des Fraunhofer Instituts für Lasertechnik ILT
Beauftragter für Fusionsforschung der Fraunhofer-Gesellschaft
Telefon +49 241 8906-0
directors-office@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
www.ilt.fraunhofer.de
Weitere Informationen:
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…