Wissenschaftliche Bildanalyse für jedermann
Die Software JIPipe wurde von Wissenschaftlern am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (Leibniz-HKI) entwickelt und vereinfacht die Analyse von in der Forschung entstandenen Bildern entscheidend.
Nutzer*innen können nach ihrem Anwendungsbedarf Flowcharts erstellen und so ohne Programmierkenntnisse automatische Bildanalysen mithilfe künstlicher Intelligenz durchführen. JIPipe basiert auf ImageJ, einem Standardprogramm zur wissenschaftlichen Auswertung von biomedizinischen Mikroskopaufnahmen. Die Autoren stellen ihre Entwicklung nun in Nature Methods vor.
Bilder – vor allem mikroskopische Aufnahmen – spielen in der biomedizinischen Forschung eine große Rolle. Mithilfe von Fluoreszenzmarkierungen werden beispielsweise Vorgänge in Zellen sichtbar gemacht. „Ein Bild sagt mehr als tausend Worte – das ist nach wie vor wahr“, sagt Thilo Figge, Leiter der Forschungsgruppe Angewandte Systembiologie am Leibniz-HKI und Professor an der Friedrich-Schiller-Universität Jena. Doch die Auswertung stellt die Forschenden vor zunehmende Herausforderungen.
„Es werden immer höhere Auflösungen und damit größere Datenmengen erzeugt“, erklärt Figge. „Gleichzeitig sind die Methoden der KI, also der künstlichen Intelligenz, mittlerweile so weit entwickelt, dass sie für Forschende ohne Programmierkenntnisse immer schwieriger anzuwenden sind.“
Das nun am Leibniz-HKI entwickelte Open Source Programm JIPipe – kurz für Java Image Processing Pipeline – soll das vereinfachen. „JIPipe ist ein Werkzeug, das keine Programmierfähigkeiten benötigt“, erklärt Entwickler Ruman Gerst, Mitarbeiter der Forschungsgruppe Angewandte Systembiologie. Stattdessen nutzt die Software eine visuelle Programmiersprache: Mithilfe vorgefertigter Bausteine können Nutzer*innen individuelle Arbeitsabläufe erstellen, um so Bilder nach ihren spezifischen Anforderungen automatisiert zu analysieren.
JIPipe unterstützt weitere Programmiersprachen
Das Programm basiert auf der Open Source Software ImageJ, die sich als Standard in der wissenschaftlichen Bildanalyse etabliert hat. JIPipe und ImageJ sind vollständig miteinander kompatibel und ergänzen einander bei der wissenschaftlichen Bildanalyse. „Unser Programm unterstützt ImageJ Skripte und enthält die üblichen Funktionen und Macros“, erklärt Gerst. Auch andere Programmiersprachen wie Python und R werden unterstützt.
Bild vergrößern…
Screenshot einer JIPipe-Analyse zum Überleben von Nematoden.
(c) Zoltán Cseresnyés / Leibniz-HKIDas Vorläuferprogramm wurde von Zoltán Cseresnyés, ebenfalls Mitarbeiter der Forschungsgruppe Angewandte Systembiologie, bereits vor einigen Jahren entwickelt. „Ursprünglich habe ich den Code für einen Phagozytose-Assay geschrieben“, erklärt Cseresnyés. Bei der Phagozytose nimmt eine Zelle ein Partikel – beispielsweise eine andere Zelle – auf und zersetzt es, was üblicherweise mit Fluoreszenzfarbstoffen sichtbar gemacht wird.
Mit der Zeit erweiterte der Spezialist für Bildgebung den Code immer wieder für neue Anwendungsfälle – das Programm wurde unübersichtlich und zu komplex. „Uns wurde klar, dass wir das umgestalten und modular aufbauen müssen“, erzählt Cseresnyés, weswegen das Team den Bioinformatiker Ruman Gerst ins Boot holte. Dieser schlug zudem die jetzige visuelle Programmiersprache vor, welche es ermöglicht, die Bilddaten von beliebigen biomedizinischen Problemstellungen zu analysieren.
Reproduzierbare Ergebnisse
JIPipe wurde bereits für mehrere Studien genutzt, beispielsweise um die Effizienz der Medikamentenabgabe durch sogenannte Nanocarrier in der Leber zu untersuchen oder um die Überlebensrate von Fadenwürmern zu testen, die toxinproduzierende Bakterien verdaut haben. Auch Konfrontationen zwischen Immunzellen und Pilzsporen wurden mit dem neuen Programm analysiert. Die Entwickler bieten im Rahmen des Microverse Imaging Center und der Nationalen Forschungsdateninfrastruktur NFDI4BioImage auch Kurse zur Nutzung an. „Im Gegensatz zur manuellen Bildanalyse liefert die automatisierte Analyse immer die gleichen Ergebnisse, ist somit reproduzierbar und entspricht den sogenannten FAIR-Prinzipien für die Bildanalyse“, betont Thilo Figge. Der Begriff FAIR kommt ursprünglich aus dem Bereich des Forschungsdatenmanagements und steht für “Findable (Auffindbar), Accessible (Zugänglich), Interoperable (Interoperabel) und Reusable (Wiederverwendbar)“.
Gefördert wurde die Forschung unter anderem durch die International Leibniz Research School for Microbial and Biomolecular Interactions (ILRS) Jena, durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Sonderforschungsbereiche „PolyTarget“ und „FungiNet“ (Transregio) sowie den Exzellenzcluster Balance of the Microverse und durch das Bundesministerium für Bildung und Forschung im Rahmen des InfectoGnostics Forschungscampus Jena.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Marc Thilo Figge
Angewandte Systembiologie
thilo.figge@leibniz-hki.de
Originalpublikation:
Gerst R, Cseresnyés Z, Figge MT (2023). JIPipe: visual batch processing for ImageJ. Nature Methods, https://doi.org/10.1038/s41592-022-01744-4
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…