Babystern nahe dem schwarzen Loch inmitten unserer Milchstraße

Das Galaktische Zentrum in einer Entfernung von ungefähr 30000 Lichtjahren. In der Bildmitte befindet sich das supermassive schwarze Loch Sgr A* (nicht sichtbar). Durch die Bewegung der Sterne kann auf die Position von Sgr A* geschlossen werden. Aufgrund der Staubwolke und seiner Dimensionen um X3a ist der Babystern in diesem Bild ebenfalls nicht zu sehen. Copyright: Florian Peißker

Es gibt ihn doch…

Wissenschaftler*innen entdecken schwersten und jüngsten bekannten Babystern nahe dem schwarzen Loch im Zentrum unserer Galaxie / Sie lokalisieren den möglichen Entstehungsort des „unmöglichen Sterns“ in Artikel im Fachjournal The Astrophysical Journal.

Ein internationales Team von Forscher*innen unter Führung von Dr. Florian Peißker vom Institut für Astrophysik der Uni Köln hat einen sehr jungen Stern in seiner Entstehungsphase nahe dem supermassiven schwarzen Loch Sagittarius A* (Sgr A*) im Zentrum unserer Milchstraße entdeckt. Der Stern ist nur einige 10.000 Jahre alt und damit jünger als die Menschheit. Den Babystern mit dem Namen X3a dürfte es so nahe am supermassiven schwarzen Loch eigentlich nicht geben.

Die Wissenschaftler*innen gehen davon aus, dass er sich in einer Staubwolke gebildet hat, die das gigantische Schwarze Loch umkreist und erst nach der Sternbildung auf seine jetzige Umlaufbahn gesunken ist. Die Studie „X3: a high-mass Young Stellar Object close to the supermassive black hole Sgr A*“ wurde im Fachjournal The Astrophysical Journal veröffentlicht.

Die Umgebung eines Schwarzen Lochs im Zentrum unserer Galaxie ist eine Region, die sich durch hochdynamische Prozesse und eine dominante Röntgen- wie auch UV-Strahlung auszeichnet. Eine solche Umgebung verhindert normalerweise, dass sich ein Stern wie zum Beispiel unsere Sonne bilden kann. Daher galt lange die Annahme, dass sich über Zeiträume von Milliarden Jahren nur alte, entwickelte Sterne durch dynamische Reibungskräfte in der Umgebung des supermassiven Schwarzen Lochs im Zentrum unserer Galaxie ansiedeln können. Entgegen jeglicher astrophysikalischen Erkenntnis wurden aber bereits vor zwanzig Jahren sehr junge Sterne in der direkten Umgebung von Sgr A* gefunden. Bis heute ist nicht eindeutig geklärt, wie sie dorthin gekommen sind und wo sie sich gebildet haben. Das unerwartete Auftreten von sehr jungen Sternen in unmittelbarer Nähe des supermassiven Schwarzen Lochs wird als „Paradox der Jugend“ bezeichnet.

Der Babystern X3a in seiner Hülle, X3 (in Blau dargestellt). Die Hülle wird dabei von stellaren Winden angeblasen weshalb sich eine Zigarrenähnliche Form ausbildet. Auf Zeitskalen von weniger als 10 Jahren können sich Klumpen bilden die wiederum von X3a verschluckt werden. Copyright: Florian Peißker

Der Babystern X3a – zehnmal so groß und dabei fünfzehnmal so schwer wie unsere Sonne – könnte nun erklären, wie das möglich ist: X3a benötigte besondere Entstehungsbedingungen in der direkten Umgebung des Schwarzen Lochs. Erstautor der Studie Dr. Florian Peißker erklärt: „In einer Entfernung von nur einigen Lichtjahren vom Schwarzen Loch gibt es eine Region, welche die Bedingungen für Sternentstehung erfüllt. Dieser Ring aus Gas und Staub ist hinreichend kalt und gegen zerstörerische Strahlung abgeschirmt.“ Tiefe Temperaturen und hohe Dichten führten dort dazu, das sich Wolken von hunderten Sonnenmassen bildeten. Diese Wolken konnten sich über Wechselwirkungen miteinander sehr schnell in Richtung des Schwarzen Lochs bewegen.

Hinzu komme, dass sich in unmittelbarer Nähe des Babysterns in der Sternentstehungsregion sehr heiße Klumpen gebildet haben, die von X3a aufgenommen wurden. Nur so konnte X3a überhaupt eine so hohe Masse erreichen. Allerdings sind diese Klumpen nur ein Teil von dessen Entstehungsgeschichte, erklären aber nicht seine „Geburt“.

Die Wissenschaftler*innen gehen daher von folgendem Szenario aus: Abgeschirmt vom Einfluss der Schwerkraft von Sgr A* und der intensiven Strahlung könnte sich in dessen äußerem Gas- und Staubring eine ausreichend dichte Gaswolke gebildet haben. Diese Wolke hatte eine Masse von etwa hundert Sonnen und kollabierte unter ihrer eigenen Schwerkraft zu einem oder mehreren Protosternen. „Diese sogenannte Fallzeit entspricht ungefähr dem Alter von X3a. Daher gehen wir davon aus, dass der Prozess die Geburt von X3a war“, ergänzt Peißker. Beobachtungen haben gezeigt, dass es viele dieser Wolken gibt, die miteinander wechselwirken können. Es ist daher plausibel, dass von Zeit zu Zeit eine Wolke in Richtung des Schwarzen Lochs fällt.

Dieses Szenario würde ferner zum Entwicklungsstand von X3a passen, der sich gerade zu einem reifen Stern entwickelt. Es ist daher durchaus plausibel, dass der Gas- und Staubring als Geburtsort der jungen Sterne im Zentrum unserer Galaxie fungiert. Dr. Michal Zajaček von der Masaryk-Universität in Brno, ein Mitautor der Studie, sagt: „Mit seiner hohen Masse von etwa dem Zehnfachen der Sonnenmasse ist X3a ist ein Riese unter den Sternen, und diese Riesen entwickeln sich sehr schnell zu einem reifen Stern. Wir hatten das Glück, den massereichen Stern inmitten der kometenförmigen zirkumstellaren Hülle zu entdecken. Anschließend haben wir wichtige Merkmale identifiziert, die auf ein junges Alter hindeuten, wie etwa die kompakte zirkumstellare Hülle, die um ihn herum rotiert.“

Da ähnliche Staub- und Gasringe auch in anderen Galaxien zu finden sind, kann der beschriebene Mechanismus auch dort funktionieren. Viele Galaxien können daher sehr junge Sterne in ihrem Zentrum beherbergen. Geplante Beobachtungen mit dem James-Webb-Weltraumteleskop der NASA oder dem Extremely Large Telescope der Europäischen Südsternwarte (ESO) in Chile werden dieses Sternentstehungsmodell sowohl für unsere Galaxie als auch für andere Galaxien testen.

Inhaltlicher Kontakt:
Dr. Florian Peißker
Institut für Astrophysik der Universität zu Köln
+49 221 470 7788
peissker@ph1.uni-koeln.de

Presse und Kommunikation:
Robert Hahn
+49 221 470 2396
r.hahn@verw.uni-koeln.de
Veröffentlichung:
https://iopscience.iop.org/article/10.3847/1538-4357/aca977

Link zu Video:

Verantwortlich: Dr. Elisabeth Hoffmann – e.hoffmann@verw.uni-koeln.de

https://portal.uni-koeln.de/universitaet/aktuell/presseinformationen/detail/babystern-nahe-dem-schwarzen-loch-inmitten-unserer-milchstrasse-es-gibt-ihn-doch

Media Contact

Gabriele Meseg-Rutzen Kommunikation und Marketing

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…