Mit Blutzucker Strom erzeugen

Der Prototyp der Brennstoffzelle ist in ein Vlies eingepackt und etwas grösser als ein Daumennagel.
Fussenegger Lab, ETH Zürich

Wenn eine Brennstoffzelle unter der Haut Blutzucker aus dem Körper in elektrische Energie umwandelt, klingt das nach Science-​Fiction. Dabei funktioniert es einwandfrei, wie ein ETH-​Forschungsteam um den Biotechnologieprofessor Martin Fussenegger zeigt.

Bei Typ-​1-Diabetiker:innen produziert der Körper kein Insulin. Deshalb müssen sich Betroffene das Hormon von aussen zuführen, um den Blutzuckerspiegel zu regulieren. Heutzutage geschieht dies meist über Insulinpumpen, die direkt am Körper sitzen. Solche Geräte, aber auch andere medizinische Anwendungen wie beispielsweise Herzschrittmacher, brauchen eine zuverlässige Energieversorgung. Diese wird derzeit vor allem mit Strom aus Batterien oder wiederaufladbaren Akkus sichergestellt.

Ein Team von Forschenden um Martin Fussenegger vom Departement Biosysteme der ETH Zürich in Basel hat nun eine futuristisch anmutende Idee verwirklicht: Sie haben eine implantierbare Brennstoffzelle entwickelt, die überschüssigen Blutzucker (Glukose) aus dem Gewebe nutzt, um daraus elektrische Energie zu erzeugen. Die Brennstoffzelle wiederum kombinierten die Forschenden mit bereits vor einigen Jahren in ihrer Gruppe entwickelten künstlichen Beta-​Zellen, die wie ihre natürlichen Vorbilder in der Bauchspeicheldrüse Insulin produzieren und den Blutzuckerspiegel wirksam senken.

«Besonders in westlichen Industrienationen nehmen viele Menschen mehr Kohlenhydrate zu sich als sie im Alltag benötigen», sagt ETH-​Professor Fussenegger. Das führe zu Übergewicht, Diabetes oder Herz-​Kreislauferkrankungen. «Das hat uns auf die Idee gebracht, diesen Überschuss an metabolischer Energie zu nutzen, um Strom für den Betrieb von biomedizinischen Geräten herzustellen», erklärt der Biotechnologe weiter.

Brennstoffzelle im Teebeutelchen-​Format

Kernstück der Brennstoffzelle ist die von Fusseneggers Team eigens für diese Anwendung geschaffene Anode (Elektrode). Diese besteht aus kupferbasierten Nanopartikeln und spaltet zur Stromerzeugung Glukose in Glukonsäure und ein Proton auf, was einen Stromkreislauf in Gang setzt.

Die Brennstoffzelle ist in ein Vlies eingewickelt und mit Alginat, einem für medizinische Anwendungen zugelassenen Algenprodukt, ummantelt. Dadurch ähnelt die Brennstoffzelle einem Teebeutelchen, das unter die Haut eingesetzt werden kann. Das Alginat saugt sich mit Körperflüssigkeit voll und lässt Glukose aus dem Gewebe in ihr Inneres passieren.

Diabetes-​Netzwerk mit eigener Stromversorgung

In einem zweiten Schritt haben die Forschenden die Brennstoffzelle mit einer Kapsel gekoppelt, die künstliche Beta-​Zellen enthält. Diese können mit elektrischem Strom oder blauem LED-​Licht dazu angeregt werden, Insulin zu produzieren und auszuschütten. Solche Designerzellen haben Fussenegger und seine Mitarbeitenden schon vor einiger Zeit getestet.

Das System kombiniert also dauerhafte Stromerzeugung und kontrollierte Insulinabgabe. Sobald die Brennstoffzelle einen Glukoseüberschuss registriert, springt die Stromproduktion an. Die elektrische Energie wird dann dazu genutzt, die Zellen zu stimulieren, sodass sie Insulin produzieren und ins Blut abgeben. Der Blutzuckerspiegel sinkt dadurch auf ein normales Mass. Sobald er unter einen bestimmten Schwellenwert fällt, stoppt die Strom-​ und damit die Insulinproduktion.

Die Brennstoffzelle liefert nicht nur genügend elektrische Energie, um die Designerzellen zu stimulieren, sie reicht auch aus, damit das implantierte System mit externen Geräten wie einem Smartphone kommunizieren kann. Das ermöglicht es potenziellen Nutzer:innen, das System über eine entsprechende App zu justieren. Auch ein Arzt oder eine Ärztin könnte aus der Ferne darauf zugreifen und Anpassungen vornehmen. «Das neue System reguliert den Insulinpegel und damit den Blutzuckerstand autonom und könnte künftig zur Diabetesbehandlung eingesetzt werden», betont Fussenegger.

Langer, unsicherer Weg zur Marktreife

Das vorliegende System ist erst ein Prototyp. Die Forschenden haben es zwar im Mausmodell erfolgreich getestet, sie können es allerdings nicht zu einem markttauglichen Produkt weiterentwickeln. «Ein solches Gerät zur Marktreife zu bringen, übersteigt unsere finanziellen und personellen Mittel bei Weitem», so Fussenegger. Gefragt sei deshalb ein Industriepartner, der über entsprechende Mittel und Know-​how verfüge.

Wissenschaftliche Ansprechpartner:

Prof. Martin Fussenegger, ETH Zürich, martin.fussenegger@bsse.ethz.ch

Originalpublikation:

Maity, D., Ray, P.G., Buchmann, P., Mansouri, M. and Fussenegger, M. (2023), Blood-​Glucose-Powered Metabolic Fuel Cell for Self-​Sufficient Bioelectronics. Adv. Mater. Accepted Author Manuscript 2300890. DOI: 10.1002/adma.202300890

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2023/03/medienmitteilu…

Media Contact

Peter Rüegg Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane

…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….

Neue Perspektiven für die Materialerkennung

SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…

Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck

Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…