Genetisch kodierte Nano-Barcodes

Prof. Gil Gregor Westmeyer und sein Team haben genetisch kodierte Nano-Barcodes entwickelt. Diese ermöglichen es, Zellzustände und -strukturen mit dem Elektronenmikroskop zu identifizieren, die sonst unerkannt bleiben würden.
(c) Barth van Rossum / TUM

Elektronenmikroskopie: Nano-Reporter-Proteine machen unsichtbare Prozesse sichtbar.

Wie kommunizieren die Nervenzellen unseres Gehirns miteinander? Welche Prozesse laufen ab, wenn eine T-Zelle eine Krebszelle unschädlich macht?

Noch immer sind die Details der Mechanismen auf zellulärer Ebene für uns unsichtbar. Spezielle Reporter-Proteine, die ein Forschungsteam unter Leitung der Technischen Universität München (TUM) entwickelt hat, sollen dabei helfen, diese sichtbar zu machen.

Ein Blick durch das Elektronenmikroskop ermöglicht Wissenschaftler:innen den bisher tiefsten Blick in zelluläre Strukturen – seine Auflösung liegt im Sub-Nanometerbereich. Sogar Zellbestandteile wie Mitochondrien oder Verknüpfungen zwischen Nervenzellen sind zu erkennen. Trotzdem bleiben wichtige Strukturen und Prozesse unsichtbar. „Das ist etwa so, als würde man einen Blick auf eine Stadtkarte werfen“, erklärt Gil Gregor Westmeyer, Professor für Neurobiological Engineering an der TUM und Direktor des Instituts für Synthetische Biomedizin bei Helmholtz Munich. „Diese ist ausreichend, um einen visuellen Eindruck der Umgebung zu bekommen und zu sehen, wo die Straßen verlaufen. Wie oft die Ampeln geschaltet werden, wie viel Verkehr wann an welchen Stellen herrscht oder wo gerade etwas umgebaut wird, ist daraus aber nicht ersichtlich.“

Um aber in Prozesse, die fehlerhaft sind, eingreifen zu können, oder diese in künstlichen Geweben und Organen nachzubauen, ist ein Verständnis über die Vorgänge innerhalb und zwischen den Zellen zwingend notwendig. Westmeyer und seine Kolleg:innen haben daher ein sogenanntes genetisches Reporter-System entwickelt, das für sie in den Zellen sozusagen Aufklärungsarbeit leistet. Bei den Gen-Reportern handelt es sich um Proteinkapseln, die gerade groß genug sind, dass sie im Elektronenmikroskop erkannt werden können.

Identifikation durch Barcodes

Produziert werden die Kapseln von den Zellen selbst. Ihre genetische Bauanleitung wird an bestimmte Zielgene angeheftet. Sind die Zielgene aktiv, werden die Reporter-Proteine hergestellt. Das grundlegende Prinzip dieser Methode ist in der Lichtmikroskopie bereits Standard. Hier arbeiten Forschende mit fluoreszierenden Proteinen. Diese Methode ist für das Elektronenmikroskop aber nicht geeignet, da hier keine Farben, sondern unterschiedliche Formen anhand zum Beispiel ihrer Elektronendichten unterschieden werden.

Dies haben die Wissenschaftler:innen ausgenutzt, in dem sie in unterschiedlich große Kapseln metallbindende Proteine eingebaut haben. Diese „EMcapsuline“ erscheinen dann als konzentrische Kreise unterschiedlicher Größe unter dem Elektronenmikroskop und können wie Barcodes mit Künstlicher Intelligenz schnell gefunden und zugeordnet werden.

Unsichtbare Strukturen werden erkennbar

Was genau können die Forschenden nun mithilfe der Reporter-Proteine herausfinden? Sie können zum einen eingesetzt werden, um die Aktivität bestimmter Gene anzuzeigen; aber auch, um Strukturen zu finden, die im Elektronenmikroskop sonst nicht sichtbar wären – wie etwa elektrische Synapsen zwischen Nervenzellen oder Rezeptoren, die die Interaktion zwischen Krebszellen und T-Zellen beeinflussen.

„Wenn wir den EMcapsulinen außerdem noch fluoreszierende Eigenschaften verleihen, ist es möglich, die Strukturen zunächst in der Lichtmikroskopie im lebenden Gewebe zu untersuchen“, sagt Felix Sigmund, Erstautor der Studie. Dabei könnten auffällige Dynamiken oder Strukturen beobachtet werden, die in einem nächsten Schritt im Elektronenmikroskop hochaufgelöst werden.

„Es ist auch möglich, die Reporter-Proteine in Zukunft als Sensoren einzusetzen, die ihre Struktur ändern, zum Beispiel wenn eine Zelle aktiv wird. So lassen sich die Zusammenhänge zwischen Zellfunktion und Struktur besser aufklären, was auch für das Verständnis von Krankheitsprozessen relevant ist, sowie für die Herstellung von therapeutischen Zellen und Geweben“, ergänzt Westmeyer.

Dazu werden die Forscher:innen auch die neue Elektronenmikroskopie Facility der TUM nutzen und mit dem neuen TUM Center for Organoid Systems (COS) zusammenarbeiten.

Prof. Gil Gregor Westmeyer und sein Team haben genetisch kodierte Nano-Barcodes entwickelt. Diese ermöglichen es, Zellzustände und -strukturen mit dem Elektronenmikroskop zu identifizieren, die sonst unerkannt bleiben würden.
(c) Andreas Heddergott / TUM; Barth van Rossum

Prof. Gil Westmeyer ist Principal Investigator am Munich Institute of Biomedical Engineering (MIBE). Das MIBE ist ein Integrative Research Institute der Technischen Universität München (TUM), das interdisziplinäre Zusammenarbeit und Synergien zwischen Forschenden aus dem weiten Feld des Biomedical Engineering fördert. Am MIBE entwickeln und verbessern Forschende aus der Medizin, den Naturwissenschaften und Ingenieurwissenschaften gemeinsam Verfahren zur Prävention, Diagnose und Behandlung von Krankheiten. Die Aktivitäten reichen dabei von der Untersuchung grundlegender wissenschaftlicher Prinzipien bis zu deren Anwendung in medizinischen Geräten, Medikamenten oder Computerprogrammen. https://www.bioengineering.tum.de/

An der Forschungsarbeit waren Forschende folgender Einrichtungen beteiligt: Technische Universität München (TUM); Helmholtz Munich; Max-Planck-Institut für biologische Intelligenz; Max-Planck-Institut für Multidisziplinäre Naturwissenschaften; Max-Planck-Institut für Neurobiologie des Verhaltens – caesar; Carl Zeiss Microscopy GmbH.

Die Forschungsarbeit wurde im Rahmen des Consolidator Grant „EMcapsulins“ des European Research Council gefördert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gil Westmeyer
Technische Universität München
Professur für Neurobiological Engineering
Tel: +49 (89) 289 10953
gil.westmeyer@tum.de

Originalpublikation:

F. Sigmund, O. Berezin, S. Beliakova, B. Magerl, M. Drawitsch, A. Piovesan, F. Gonçalves, S.-V. Bodea, S. Winkler, Z. Bousraou, M. Grosshauser, E. Samara, J. Pujol-Martí, S. Schädler, C. So, S. Irsen, A. Walch, F. Kofler, M. Piraud, J. Kornfeld, K. Briggman, G. G. Westmeyer: Genetically encoded barcodes for correlative volume electron microscopy, Nature Biotechnology (2023), DOI: https://doi.org/10.1038/s41587-023-01713-y

Augmenting electron microscopy with barcoded gene reporters, Nature Biotechnology Research Briefing (2023), DOI: https://doi.org/10.1038/s41587-023-01731-w

Weitere Informationen:

https://www.bioengineering.tum.de/ Munich Institute of Biomedical Engineering
https://mediatum.ub.tum.de/1705691 Hochauflösendes Bildmaterial

https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/genetisch-kodierte-nano-barcodes

Media Contact

Pressestelle Corporate Communications Center
Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Trends in Photonik und Quantentechnologien

FBH auf den Photonics Days 2024. Am 9. und 10. Oktober 2024 beteiligt sich das Ferdinand-Braun-Institut an den Photonics Days Berlin Brandenburg mit Vorträgen und der begleitenden Ausstellung. Zwei Tage…

Europas biologischer Vielfalt auf der Spur

Forschende aus 33 Ländern erstellen Referenzgenome von 98 Arten. Wissenschaftler:innen aus ganz Europa ist es im Rahmen des Pilotprojekts des European Reference Genome Atlas (ERGA) gelungen, hochwertige Referenzgenome für 98…

Zirkulär wirtschaften für eine verantwortliche Regionalentwicklung

IAT begleitet Fab.Region Bergisches Städtedreieck. Kann zirkuläre Wirtschaft helfen, unser Wirtschaftssystem umweltverträglicher und sozial gerechter zu machen? Die „Fabrication City“ – kurz „Fab City“ ¬– kann (fast) alles, was sie…

Partner & Förderer