Ein neuer Zugang zum Universum

Konzept eines Pulsar-Timing-Arrays zur Beobachtung eines Ensembles von Millisekunden-Pulsaren über große Entfernungen in der Milchstraße, um so Gravitationswellen im Nanohertzbereich erfassen zu können.
(c) David Champion / MPIfR

Ein europäisches Forscherteam unter Beteiligung der Max-Planck-Institute für Radioastronomie und Gravitationsphysik hat zusammen mit indischen und japanischen Kollegen Ergebnisse von mehr als 25 Jahren Beobachtungen mit sechs der empfindlichsten Radioteleskope der Welt veröffentlicht. Mit anderen internationalen Kollaborationen haben sie unabhängig voneinander Beweise für Gravitationswellen bei extrem niedrigen Frequenzen gefunden, die von Paaren extrem massereicher Schwarzer Löcher in den Zentren verschmelzender Galaxien stammen könnten. Die Ergebnisse sind ein entscheidender Meilenstein zur Erschließung eines neuen, astrophysikalisch bedeutenden Bereichs des Gravitationswellen-Spektrums.

In einer Reihe von Artikeln, die diese Woche in der Fachzeitschrift „Astronomy and Astrophysics“ veröffentlicht wurden, berichten Wissenschaftler:innen des European Pulsar Timing Array (EPTA) in Zusammenarbeit mit indischen und japanischen Kolleg:innen des Indian Pulsar Timing Array (InPTA) über die Ergebnisse von Messungen, die über einen Zeitraum von 25 Jahren durchgeführt wurden. Die Daten lassen auf neue Erkenntnisse in Bezug auf die Entstehung und Entwicklung unseres Universums und seiner Galaxien hoffen.

EPTA ist ein Zusammenschluss von Forschenden aus mehr als zehn Institutionen in ganz Europa und bringt Astronom:innen und theoretische Physiker:innen zusammen, welche die Beobachtungen der extrem regelmäßigen Pulse von einer besonderen Art erloschener Sternen, den so genannten Pulsaren, nutzen, um einen Gravitationswellen-Detektor von der Größe einer Galaxie zu aufzuspannen.

Ein gigantischer Gravitationswellen-Detektor

Bild vergrößern…
Eine kosmische Population binärer supermassereicher Schwarzer Löcher erzeugt einen Hintergrund aus niederfrequenten Gravitationswellen, der mit den größten Teleskopne in Europa und auf der Erde untersucht wird.
Daniëlle Futselaar (artsource.nl) / MPIfR

„Pulsare sind hervorragende natürliche Uhren. Wir nutzen die unglaubliche Regelmäßigkeit ihrer Signale, um nach winzigen Veränderungen in ihrem Ticken zu suchen und so die minimalen Dehnungen und Stauchungen der Raumzeit durch Gravitationswellen aus dem fernen Universum nachzuweisen“, erklärt Dr. David Champion, leitender Wissenschaftler am MPIfR in Bonn.

Dieser riesige Gravitationswellen-Detektor, der sich von der Erde bis zu 25 ausgewählten Pulsaren in der gesamten Galaxis erstreckt, ermöglicht die Untersuchung von Gravitationswellen-Frequenzen, die weit unter denen in anderen Experimenten gemessenen liegen. Die Beobachtungen werfen Licht auf das Gravitationswellen-Universum im Nanohertz-Bereich und enthüllen einzigartige Quellen und neue Phänomene.

„Im Zentrum von Galaxien lauern supermassereiche Schwarze Löcher, die mehrere Millionen Mal schwerer sind als die Sonne. Wenn die Pulse der Pulsare zur Erde gelangen, werden sie von den schwachen, weit entfernten Echos der Gravitationswellen geprägt, die von diesen monströsen Schwarzen Löchern ausgesendet werden“, sagt Dr. Aditya Parthasarathy, Forscher am MPIfR. Diese Echos enthalten Informationen über die kosmische Population supermassereicher binärer Schwarzer Löcher, die sich bei der Verschmelzung von Galaxien bilden und den Beginn einer neuen Reise ins Universum markieren.

Ein einzigartiger Datensatz durch koordinierte Zusammenarbeit

Diese Ergebnisse basieren auf jahrzehntelangen koordinierten Beobachtungskampagnen mit den fünf größten Radioteleskopen in Europa: dem 100-m-Radioteleskop Effelsberg in Deutschland, dem Lovell-Teleskop in Großbritannien, dem Nançay-Radioteleskop in Frankreich, dem Sardinia-Radioteleskop in Italien und dem Westerbork-Radiosyntheseteleskop in den Niederlanden.

Prof. Michael Kramer, Direktor am MPIfR in Bonn, betont: „Die Daten des Effelsberger Teleskops reichen mehr als 25 Jahre zurück. Das ist wichtig, denn es macht das EPTA einzigartig empfindlich für die niedrigsten untersuchten Frequenzen.“

„Einmal im Monat“, fügt Dr. Kuo Liu vom MPIfR in Bonn hinzu, „nehmen die europäischen Teleskope als Large European Array for Pulsars außerdem gemeinsam Daten auf, um eine zusätzliche Empfindlichkeit zu erreichen, die mit der des größten Radioteleskops der Erde vergleichbar ist.“ Diese Beobachtungen wurden auch durch Daten des InPTA in Indien ergänzt, was zur Entwicklung eines einzigartigen empfindlichen Datensatzes geführt hat.

Dr. Yajun Gou, Forscherin am MPIfR, erklärt die Bedeutung: „Unsere Teleskope haben die Pulsare sehr oft und über einen sehr langen Zeitraum hinweg beobachtet. Wir können Frequenzen der Gravitationswellen aufspüren, die so langsam sind wie eine Schwingung alle 30 Jahre, was die Empfindlichkeit gegenüber Doppelsternsystemen mit Schwarzen Löchern mit Umlaufzeiten von bis zu 50 Jahren verbessert.“ Im Gegensatz dazu ermöglicht die hohe zeitliche Dichte der Daten die Untersuchung von Frequenzen, die bis zu 100 Schwingungen pro Monat betragen. Doktorand Jiwoon Jang übersetzt: „Wir können Doppelsystem von Schwarzen Löchern mit Umlaufzeiten von wenigen Jahren bis zu Monaten herunter untersuchen.“

Die Bekanntgabe der EPTA-Ergebnisse erfolgt in Abstimmung mit ähnlichen Veröffentlichungen anderer Kollaborationen weltweit, nämlich der in Parkes ansässigen australischen, der chinesischen und der nordamerikanischen Pulsar Timing Array (PTA)-Kollaborationen, abgekürzt PPTA, CPTA bzw. NANOGrav. Die Astronomen sind sich sicher, dass es sich bei dem, was sie sehen, um Signaturen von Gravitationswellen handelt, da ihre Ergebnisse mit ähnlichen Daten und Ergebnissen in allen PTA-Kollaborationen übereinstimmen und von diesen unterstützt werden.

„Die Analyse der Daten von Pulsar Timing Arrays wird dadurch erschwert, dass PTAs astrophysikalische Objekte als Detektoren verwenden“, erläutert Jonathan Gair, Gruppenleiter in der Abteilung „Astrophysikalische und Kosmologische Relativitätstheorie“ am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) in Potsdam und Mitautor der Veröffentlichung. „Es gibt viele verschiedene Rauschquellen, die die Pulsare selbst mitbringen und die bei der Suche nach der Signatur der Gravitationswellen berücksichtigt werden müssen. Das Signal selbst ist darüber hinaus zufällig, so dass es wie Rauschen aussieht.“

Die heute vorgestellte Analyse der EPTA-Daten entspricht den Erwartungen von Astrophysikern. Der Goldstandard in der Physik für die Entdeckung eines neuen Phänomens ist jedoch, dass das Ergebnis des Experiments mit einer Wahrscheinlichkeit von weniger als einem Mal in einer Million auftritt. Das von EPTA – wie auch von den anderen internationalen Kollaborationen – berichtete Ergebnis erfüllt dieses Kriterium noch nicht.

Wissenschaftler der meisten führenden PTAs führen jedoch ihre Datensätze unter der Schirmherrschaft des International Pulsar Timing Array zusammen. Ziel ist es, die aktuellen Datensätze zu erweitern, indem ein Array von über 100 Pulsaren genutzt wird, die mit dreizehn Radioteleskopen beobachtet wurden, und mehr als 1000 Beobachtungen für jeden Pulsar bündeln. Diese Daten sollten es den Forschenden ermöglichen, einen unwiderlegbaren Beweis für das Vorhandensein eines Gravitationswellen-Hintergrunds bei Nanohertz-Frequenzen zu erbringen.

Weitere Informationen:

Pulsare

Pulsare sind die Überreste massereicher Sternexplosionen, bei denen der Kern als Neutronenstern überlebt hat, sehr kompakte Objekte von 1,5 Sonnenmassen innerhalb eines Radius von 13 km. Die schnellsten Pulsare rotieren mit einer Geschwindigkeit von 700 Umdrehungen pro Sekunde und senden von ihren Magnetpolen einen Strahl aus. Aus der Sicht eines Beobachters verhalten sie sich wie kosmische Leuchttürme. Mit einem Radioteleskop werden sie als eine Reihe von Impulsen oder „Ticks“ wahrgenommen, die in sehr regelmäßigen Abständen eintreffen und ein natürliches und präzises uhrähnliches Signal darstellen. Es wird erwartet, dass ein solches Uhrensignal durch niederfrequente Gravitationswellen gestört wird.

Pulsar-Timing-Array (PTA)

Ein Pulsar-Timing-Array ist ein Netzwerk von Pulsaren, die mit einem oder idealerweise mehreren Radioteleskopen beobachtet werden, um nach Gravitationswellen im Nanohertz-Bereich (d. h. mit Wellenlängen in der Größenordnung von mehreren Lichtjahren) zu suchen und diese zu entdecken. Der PTA besteht aus einem Ensemble von Millisekunden-Pulsaren, die in verschiedenen Richtungen von der Erde aus beobachtet werden. Aufgrund der Präzision ihrer Pulsperioden und ihrer Verteilung am Himmel stellen sie einen Gravitationswellendetektor dar, der große Entfernungen in der Galaxis abdeckt. Die Analyse der Pulsankunftszeiten bei den beobachteten Pulsaren erlaubt nach Korrektur einer ganzen Reihe von Effekten den Rückschluss auf Gravitationswellen im Nanohertz-Bereich.

Die Verwendung dieser Pulsare als galaktischer Gravitationswellendetektor wurde von M. Sazhin (1978, Astronomisches Institut Sternberg, Moskau) und S. Detweiler (1979, Universität Yale) vorgeschlagen. Sazhin schlug vor, dass ultralange Gravitationswellen durch ihre Störung bei der Ausbreitung elektromagnetischer Pulse nachgewiesen werden könnten. Detweiler zeigte, dass man anhand der veröffentlichten Pulsardaten eine Amplitudenobergrenze von 10-11 für die Energiedichte eines stochastischen Gravitationswellenhintergrunds mit Perioden von 1 Jahr festlegen kann.

Einige Jahre später führten Hellings und Downs (1983, Jet Propulsion Laboratory) zum ersten Mal das Konzept des Pulsar-Timing-Array ein und zeigten, dass man, wenn man in der Lage ist, ein Netzwerk solcher stabilen Pulsare mit hoher Präzision zu timen, die Hintergrundemission einer Population kompakter binärer Quellen messen und insbesondere die quadrupolare Natur des Gravitationswellensignals aus der Winkelkorrelation zwischen Pulsarpaaren ableiten kann, d. h. aus der Art und Weise, wie die Pulsare je nach ihrer relativen Position am Himmel beeinflusst werden. Dies ist das Prinzip des Nachweises ultraniedriger Gravitationswellen mit dem, was wir heute ein Pulsar-Timing-Array (PTA) nennen.

Als die Technologie begann, solch präzise Messungen zu ermöglichen, die typischerweise eine Datierung der Pulsationsankunftszeit (die „Ticks“) besser als im Mikrosekundenbereich erreichen, begannen mehrere Gruppen in der Welt, die schnellst-rotierenden und stabilsten bekannten Millisekunden-Pulsare zu beobachten.

Das Europäische Pulsar Timing Array (EPTA)

Europa hat bei diesem Forschungsprogramm Pionierarbeit geleistet. Als Erbe des bereits bestehenden „European Pulsar Network“ (EPN) und der „PULSE: European Pulsar Research“-Zusammenarbeit, die 2005 mit dem Descartes-Preis der Europäischen Kommission ausgezeichnet wurde, wurde 2006 offiziell das European Pulsar Timing Array (EPTA) ins Leben gerufen, das die „Pulsar“-Teams an den größten Radioteleskopen des Kontinents vereint: das 100-m-Radioteleskop in Effelsberg (Deutschland), das Westerbork Synthesis Radio Telescope (Niederlande), das Lovell Telescope am Jodrell Bank Observatory (Großbritannien), das Sardinia Radio Telescope (Italien) und das Nançay Radio Telescope (Frankreich). An jedem dieser Orte hatten die lokalen Gruppen hochmoderne Instrumente und Datenpipelines entwickelt, die in der Lage waren, Pulsare korrekt zu messen und ein genaues Timing durchzuführen. In den folgenden Jahren kamen weitere Gruppen hinzu, die ebenfalls ihr theoretisches Fachwissen und ihre Fähigkeiten bei der Analyse von Gravitationswellendaten einbrachten: die Universitäten in Birmingham, Cambridge und Mailand sowie das Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) und das Observatorium in Paris.

Das EPTA hat seine Möglichkeiten im Jahr 2008 dank des vom ERC finanzierten „Large European Array for Pulsars“ (LEAP) erheblich erweitert. Mit monatlichen Beobachtungen nutzt das LEAP die kohärent zusammengefügte Empfindlichkeit der EPTA-Teleskope, um eine Schüssel mit einem effektiven Durchmesser von bis zu 200 m zu bilden. In 25 Jahren Beobachtungszeit haben diese Instrumente etwa 60.000 Messungen für die 25 stabilsten Millisekundenpulsare gesammelt, die eine effektive Kadenz von einigen Tagen ermöglichen und für die meisten von ihnen eine Zeitgenauigkeit von mehr als einer Mikrosekunde erreichen

Diese Zahlen definieren die Empfindlichkeit und den Frequenzbereich des Arrays: einige 10-16 in der Gravitationsenergiedichte im Durchschnitt über den Himmel, zwischen 1,3 nHz und 5,8 μHz in der Frequenz, wobei die lokale Empfindlichkeit in einer Region der Himmelskugel von der tatsächlichen Verteilung und Stabilität der Pulsare im Array abhängt.

Large European Array for Pulsars (LEAP)

Dank des vom ERC finanzierten „Large European Array for Pulsars“ (LEAP-Projekt unter der Leitung von Prof. Michael Kramer) hat das EPTA seine Kapazitäten 2008 erheblich erweitert. Mit monatlichen Beobachtungen nutzt das LEAP die kohärent zusammenzugefügte Empfindlichkeit der EPTA-Teleskope, um ein virtuelles Teleskop mit einem effektiven Durchmesser von bis zu 200 m zu bilden. Im Gegensatz zu radioastronomischen Interferometern (Very Long Baseline Interferometry, VLBI) kommt es hier nicht auf die Entfernung zwischen den einzelnen Teleskopen an, sondern auf deren kumulative Sammelfläche zum Nachweis der schwachen Radiostrahlung von Pulsaren. LEAP stellt für die EPTA-Teleskope außerdem eine neue Generation von Datenerfassungsgeräten zur Verfügung, die als Grundlage für die Veröffentlichung maßgeblich zur Anwendung gekommen sind.

Indian Pulsar Timing Array (InPTA)

Das Indian Pulsar Timing Array (InPTA) nutzt das Giant Metrewave Radio Telescope (GMRT) bei Pune als Schlüsselinstrument für die indischen Beobachtungen. Diese InPTA-Beobachtungen erweitern den Bereich der Radiofrequenzen, die zur Beobachtung von Pulsaren verwendet werden, auf viel niedrigere Frequenzen als die, die normalerweise vom EPTA verwendet werden. Durch die Kombination der Datensätze sind EPTA und InPTA in der Lage, das durch das interstellare Medium verursachte Zeitrauschen erfolgreich abzuschwächen.

Am InPTA-Experiment sind Forscher des NCRA (Pune), des TIFR (Mumbai), des IIT (Roorkee), des IISER (Bhopal), des IIT (Hyderabad), des IMSc (Chennai) und des RRI (Bengaluru) zusammen mit ihren Kollegen von der Universität Kumamoto (Japan) beteiligt.

NanoGRAV

Das „North American Nanohertz Observatory for Gravitational Waves“ umfasst Millisekunden-Beobachtungen von Pulsaren mit den Radioteleskopen Green Bank und Arecibo (das 300-m-Teleskop von Arecibo ist ab 2020 nicht mehr in Betrieb) sowie mit dem VLA und dem CHIME-Radioteleskop in Kanada.

Parkes Pulsar Timing Array (PPTA)

Das Parkes Pulsar Timing Array (PPTA) war die erste offizielle Kollaboration, die sich der Suche nach Gravitationswellensignalen im Nano-Hertz-Bereich widmete. Es nutzt seit 2005 Beobachtungen mit dem 64-m-Radioteleskop bei Parkes in New South Wales.

Chinese Pulsar Timing Array (CPTA)

Das Chinese Pulsar Timing Array (CPTA) ist das jüngste Mitglied der PTA-Kollaborationsfamilie. Das CPTA kann die Beobachtungen des neuen FAST-Teleskops nutzen, das 2020 seinen vollen Betrieb aufgenommen hat.

Internationales Pulsar-Timing-Array (IPTA)

Das IPTA entstand 2009 aus der Zusammenarbeit der drei damals bestehenden Konsortien: EPTA in Europa, NANOGrav in Nordamerika und PPTA in Australien. Kürzlich kam die indische Kooperation InPTA hinzu. Zwei kombinierte Datensätze wurden in den Jahren 2016 und 2019 veröffentlicht. Sie dienten in erster Linie dazu, frühere, von den einzelnen Gruppen individuell ermittelte Nachweisgrenzen zu bestätigen, instrumentelle Systematiken zu verfolgen und wissenschaftliche Ergebnisse für die Planetenephemeriden des Sonnensystems und die Definition einer unabhängigen Pulsarzeitstandardreferenz zu erzielen. Das IPTA arbeitet jetzt in vollem Umfang zusammen, um unsere neuesten Daten zu kombinieren und gemeinsam zu analysieren.

Die Verwirklichung eines PTA

Es gibt eine Reihe von Vordergrundquellen von Signalen, die charakterisiert und korrekt modelliert werden müssen, damit sie bei der Analyse von Gravitationswellensignal unterschieden werden können. Diese Signale sind von unterschiedlicher Natur. Ihr Ursprung kann instrumentell (z. B. Referenzuhr, Instabilität der Empfängersysteme, Kalibrierungsunsicherheiten), astrophysikalisch (z. B. im Zusammenhang mit der Instabilität der Radioemission in der Pulsarmagnetosphäre oder mit Schwankungen der Sternrotation) oder durch den Weg des Radiosignals durch das interstellare Medium (mit Dispersionsverzögerungen und Streuung) bedingt sein. Einige dieser Störungen können in der Tat die Gravitationsemissionssignatur teilweise nachahmen und/oder verbergen, und man muss sie vor jeder weiteren Analyse genau charakterisieren und modellieren.
Schließlich spielen die planetarischen Ephemeriden des Sonnensystems (SSE), die die Position der Planeten um die Sonne in Abhängigkeit von der Zeit beschreiben, eine entscheidende Rolle. Das EPTA verwendet den Schwerpunkt des Sonnensystems (SSB) als gemeinsamen Bezugsrahmen, auf den wir die Radiobeobachtungen (Zeit der Pulsankünfte) aller Radioteleskope reduzieren. Jede Ungenauigkeit in den relativen Positionen, Geschwindigkeiten oder Massen der Planeten kann zu nicht berücksichtigten Verzögerungen führen und sich auf die Zeitmessungen aller Pulsare des Arrays auswirken, wodurch eine falsche räumliche Korrelation entsteht, die die Geometrie einer GW-Hintergrundstrahlung heimtückisch nachahmt. Um dies zu vermeiden, vergleicht man sorgfältig die Ergebnisse verschiedener SSE-Lösungen, z. B. die des Jet Propulsion Laboratory (Folkner & Park 2018) oder des Pariser Observatoriums (INPOP – Fienga et al 2019).

Gravitationswellen

Gravitationswellen sind Deformationen der Raumzeit, die sich mit Lichtgeschwindigkeit ausbreiten. Sie wurden bereits 1915 von Einstein mit der Allgemeinen Relativitätstheorie vorhergesagt, Im Jahre 1982 konnten diese erstmals durch den Energieverlust eines nahen Paares von Neutronensternen nachgewiesen und 2015 direkt mit dem bodengestützten Laserinterferometer LIGO gemessen werden.

Die europäische Gemeinschaft bereitet eine neue Weltraummission, LISA, vor (die endgültige Verabschiedung wird für Anfang 2024 erwartet), die nach ihrem Start im Jahr 2035 das Gravitationswellenspektrum bei niedrigen Frequenzen (mHz) untersuchen und die Population kompakter binärer Weißer Zwerge und Neutronensterne in unserer Galaxie, die sich gegenseitig umkreisen, sowie die Verschmelzung massereicher (etwa eine Million Sonnenmassen) Schwarzer Löcher im Universum untersuchen soll. LISA verwendet dasselbe Konzept wie die bodengestützten Laserinterferometer, allerdings mit einer Konstellation von drei Satelliten, die im Abstand von 2,5 Millionen km um die Sonne kreisen und das Laserlicht austauschen. Die Frequenzen von Gravitationswellen, die mit PTAs gesehen werden, sind damit nochmals niedriger als die von LISA.

MPIfR-Koautoren

J. Antoniadis, A.-S. Bak Nielsen, D. J. Champion, G. Desvignes, E. Graikou, Y. J. Guo, H. Hu, J. Jang, J. Jawor, A. Jessner, R. Karuppusamy, M. Kramer, K. Lackeos, K. J. Lee, K. Liu, R. A. Main, A. Parthasarathy, V. Venkatraman Krishnan und J. P. W. Verbiest.

Wissenschaftliche Ansprechpartner:

Dr. David Champion
Max-Planck-Institut für Radioastronomie, Bonn
Fon: +49 228 525-315
Mobile: +49 151 4003 9782
E-mail: champion@mpifr-bonn.mpg.de

Prof. Dr. Michael Kramer
Direktor und Leiter der Forschungsabteilung “Radioastronomische Fundamentalphysik”
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Dr. Aditya Parthasarathy
Max-Planck-Institut für Radioastronomie, Bonn
Fon: +49 228 525-122
E-mail: aparthas@mpifr-bonn.mpg.de

Dr. Kuo Liu
Max-Planck-Institut für Radioastronomie, Bonn
Fon: +49 228 525-505
E-mail: kliu@mpifr-bonn.mpg.de

Originalpublikation:

J. Antoniadis et al.: “The second data release from the European Pulsar Timing Array I. The dataset and timing analysis”, in Astronomy & Astrophysics, June 2023
https://cloud.mpifr-bonn.mpg.de/index.php/s/kWYs2LtYQ9PQAP4
J. Antoniadis et al.: “The second data release from the European Pulsar Timing Array II. Customised pulsar noise models for spatially correlated gravitational waves”, in A&A, June 2023
https://cloud.mpifr-bonn.mpg.de/index.php/s/Yx7CTYniCx7pQmR
J. Antoniadis et al.: “The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals”, in A&A, June 2023
https://cloud.mpifr-bonn.mpg.de/index.php/s/5BS4QnZaKWnn3Ti

Weitere Informationen:

https://www.mpifr-bonn.mpg.de/7917676/epta-jun2023

Media Contact

Norbert Junkes Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…