Funktionelle Oberflächenveredelung
Wachstumsdynamik feinster Zinnschichten gezielt steuern.
Für viele sensorische, elektronische und photonische Anwendungen nehmen Beschichtungen im Nanometermaßstab mit funktionellen Materialien eine wichtige Rolle ein. Einem internationalen Forschendenteam ist es – unter Koordination des Leibniz-IPHT aus Jena – erstmals gelungen, neuartige Wachstumseffekte von Zinnschichten an Silizium-nanometerstrukturierten Oberflächen zu beobachten. Mit den gewonnenen Erkenntnissen kann die chemische Zusammensetzung von abgeschiedenen Dünnschichten in Zukunft präzise gesteuert und kontrolliert werden, was neue Anwendungen im Bereich der Biophotonik, Energiegewinnung oder Mobilität eröffnet. Die Ergebnisse wurden in der Fachzeitschrift Small veröffentlicht.
Zinnhaltige Schichten sind für verschiedenste elektronische Bauteile und Komponenten in der Elektroindustrie ebenso gefragt wie in der Sensorik oder Photovoltaik. Den Entstehungsprozess nanoskaliger Zinnschichten untersuchten Forschende des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern aus Deutschland, Russland und Großbritannien, dessen Ergebnisse sie in der renommierten Fachzeitschrift Small zusammenfassen.
Das Ausgangsmaterial für die beobachteten Wachstumsprozesse zinnhaltiger Dünnschichten bilden ultradünne Strukturen auf Silizium-Basis in Form von Nanodrähten mit einem Durchmesser von unter 100 Nanometern. In experimentellen Studien konnten die Forschenden erstmalig einen spezifischen Verteilungseffekt des Zinns entlang dieser Silizium-Nanostrukturen zeigen: Über die gesamte Länge der Halbleiter-Nanodrähte bildeten sich mittels metallorganischer chemischer Gasphasenabscheidung bei einer Abscheidetemperatur von 600 Grad Celsius zinnhaltige Schichten mit unterschiedlichen Oxidationsgraden.
„Indem wir verstehen, wie Zinnschichten wachsen und welche Faktoren diesen Wachstumsprozess beeinflussen, schaffen wir die Voraussetzungen, um Beschichtungsprozesse gezielt zu steuern. Damit können Oberflächen sehr präzise veredelt und an zuvor genau definierten Positionen mit gewünschten funktionellen Eigenschaften ausgestattet werden“, erklärt Dr. Vladimir Sivakov, Leiter der Arbeitsgruppe Silizium-Nanostrukturen am Leibniz-IPHT, der die Wachstumsmechanismen zusammen mit seinem Team erforschte und aufdeckte.
Anwendungen ultradünner Zinnschichten
Nanometerdünne Beschichtungen mit Zinn ermöglichen spezifische optische und elektrische Eigenschaften und erlauben, unter anderem die Erforschung und Entwicklung optischer und biophotonischer Verfahren weiter zu verbessern. In der oberflächenverstärkten Raman-Spektroskopie (Surface-enhanced Raman Scattering, SERS), mit der der molekulare Fingerabdruck biologischer Proben mithilfe SERS-aktiver Metallnanostrukturen bestimmt werden kann, können Zinnschichten als UV-SERS-aktive Oberflächen Verwendung finden. Daneben ergeben sich Einsatzgebiete in Gassensoren, in denen Zinn als hochsensitive Schicht auf Gase reagiert. Auch Anwendungsszenarien in Hochleistungs-Lithium-Ionen-Batterien für die Elektromobilität und thermische Energiespeicherung sind denkbar, in denen mit Zinn beschichtete Anoden für eine hohe elektronische Leitfähigkeit sorgen.
Mechanismen und Wachstumsdynamiken zinnhaltiger Schichten
Die Wachstumsdynamik der beobachteten zinnbasierten Schichten an nanostrukturierten Oberflächen untersuchten die Forschenden mithilfe mikroskopischer und spektroskopischer Methoden. Dabei konnten sie feststellen, dass die Oberflächen der Halbleiter-Nanodrähte – im Gegensatz zu planaren und unstrukturierten Silizium-Oberflächen, auf der die Abscheidung homogen erfolgte – mit zinnhaltigen Kristallen unterschiedlicher Größe und Form über die gesamte Länge bedeckt war.
Die im Fachmagazin Small dargelegten Ergebnisse zeigen die Bildung verschiedener Zinn-Oxidphasen entlang der nanostrukturierten Silizium-Oberflächen, die mit Zinndioxid (SnO₂) im oberen Bereich, Zinnmonoxid (SnO) im mittleren Teil und mit metallischem Zinn (Sn) im unteren Bereich identifiziert werden konnten.
Die Menge und Verteilung des entstandenen metallischen Sn und seiner SnO- und SnO₂-Oxide kann durch die Länge, den Durchmesser, die Porosität sowie die Abstände der siliziumbasierten Halbleiter-Nanostrukturen erklärt und effektiv kontrolliert werden. Neben diesen geometrischen Parametern konnten die Forschenden die Bildung von kohlenwasserstoffhaltigen Nebenprodukten als Reduktionsmittel für die Zinnoxid-Reduktion als weiteren Einflussfaktor für die Verteilung der gebildeten Zinnschichten entlang der Halbleiter-Nanostrukturen aufdecken. Auch die Wärmeleitfähigkeit der Silizium-Strukturen und damit die Temperaturverteilung entlang der Nanodrähte während der hochtemperierten Gasphasenabscheidung kann die Bildung unterschiedlicher Zinnoxidphasen beeinflussen.
Das Projekt „Entwicklung und atomare und elektronische Strukturcharakterisierung von funktionellen Sn/SnOx-Oberflächen für die SERS-basierte Analyse falsch gefalteter Proteine“ 448666227 (SI1893/27-1) wurde von der Deutschen Forschungsgemeinschaft (DFG) gefördert.
Über das Leibniz-Institut für Photonische Technologien
Im Mittelpunkt der Forschung am Leibniz-IPHT steht das Licht. Wissenschaftlerinnen und Wissenschaftler erforschen innovative photonische Verfahren und Werkzeuge für die Anwendung in der klinischen Diagnostik, etwa der Infektions- und Krebsdiagnostik, der Pharmazie und Prozesskontrolle sowie in der Lebensmittel- und Umweltsicherheit. Ein wesentliches Ziel ist es, die Translation zu beschleunigen: die Umsetzung von Forschungsergebnissen in die Praxis — from Ideas to Instruments. https://www.leibniz-ipht.de/
Wissenschaftliche Ansprechpartner:
Dr. Vladimir Sivakov
Leiter der Arbeitsgruppe Silizium-Nanostrukturen am Leibniz-IPHT
Telefon: +49 (0) 3641 · 206-440
E-Mail: vladimir.sivakov@leibniz-ipht.de
Originalpublikation:
S. Turishchev, A. Schleusener, O. Chuvenkova, E. Parinova, P. Liu, M. Manyakin, S. Kurganskii, V. Sivakov, Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers, Small, Volume 19, Issue 10, 2023,
https://doi.org/10.1002/smll.202206322
P. Liu, A. Schleusener, G. Zieger, A. Bochmann, M. A. van Spronsen, V. Sivakov, Nanostructured Silicon Matrix for Materials Engineering, Small, Volume 19, Issue 12, 2023,
https://doi.org/10.1002/smll.202206318
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Parkinson-Medikament verändert durch Eisenmangel das Darmmikrobiom zum Schlechteren
Störung der mikrobiellen Gemeinschaft begünstigt Krankheitserreger im Darm. In einer bahnbrechenden neuen Studie, durchgeführt im Rahmen des FWF-geförderten Exzellenzclusters „Mikrobiomes drive Planetary Health“, haben Wissenschafter*innen der Universität Wien in Zusammenarbeit…
Neues Verfahren zur Rückgewinnung wertvoller Elemente aus Holzasche
Team der Hochschule Rottenburg und der Universität Tübingen erarbeitet Grundlagen zur Aufbereitung des bisherigen Verbrennungsabfalls als Sekundärrohstoff. Die Aschen, die bei der Holzverbrennung in Heiz- und Kraftwerken entstehen, enthalten wertvolle…
Auf der Spur des „Schlüsselproteins“
Neues Forschungsprojekt zur Ursache von Lungenhochdruck bei Herzinsuffizienz. Pulmonale Hypertonie (PH) ist eine schwerwiegende Erkrankung, bei der der Druck in den Blutgefäßen zwischen Herz und Lunge dauerhaft erhöht ist. Besonders…