Selbstheilender Kunststoff wird biologisch abbaubar
Konstanzer Chemiker*innen entwickeln Mineralplastik mit zahlreichen positiven Eigenschaften aus nachhaltigen Grundbausteinen und weisen gemeinsam mit Kollegen aus der Biologie dessen sehr gute mikrobiologische Abbaubarkeit nach.
Stellen Sie sich einen Kunststoff wie diesen vor: Er ist härter als gängige Kunststoffe, nicht brennbar und besitzt sogar Selbstheilungskräfte. Doch damit nicht genug! Seine Herstellung erfolgt bei Raumtemperatur in Wasser, also energieeffizient und ohne giftige Lösungsmittel. Dabei ist der Kunststoff vor seiner Aushärtung frei nach Wunsch formbar – wie Kaugummi. Durch Wasserzusatz kann er außerdem jederzeit wieder in seine „Kaugummi-Form“ überführt werden und ist so beliebig oft durch Umformung rezyklierbar.
Schematische Darstellungen der Wechselwirkungen im Mineralplastik. Die geschwungene schwarze Linie entspricht dem Polyglutaminsäure-Rückgrat des Mineralplastiks. Bilder: © Avasthi et al.; https://doi.org/10.1002/smtd.202300575; Lizenz: CC BY 4.0
So etwas gibt es nicht? Gibt es wohl – und zwar bereits seit einigen Jahren! Entwickelt wurde der Kunststoff in der Arbeitsgruppe des Konstanzer Chemikers Helmut Cölfen, die das Material – ein sogenanntes Mineralplastik – 2016 vorstellte. Doch auch wenn der Kunststoff mit seinem neuartigen Herstellungsverfahren und den herausragenden Materialeigenschaften seitdem auf großes Interesse seitens der Industrie stieß, hatte er aus Sicht der Konstanzer Chemiker*innen noch ein entscheidendes Manko: Aufgrund seiner chemischen Zusammensetzung war er nur schwer biologisch abbaubar.
Mit neuem Grundbaustein zu mehr Umweltverträglichkeit
„Bisher haben wir für die Herstellung unseres Mineralplastiks Polyacrylsäure verwendet. Chemisch betrachtet besitzt diese dasselbe Rückgrat wie Polyethylen, welches bekanntermaßen in der Umwelt große Probleme verursacht, weil es kaum biologisch abbaubar ist“, erklärt Cölfen. Die Konstanzer Chemiker*innen um Cölfen und Ilesha Avasthi, Postdoc in Cölfens Labor, machten sich daher ans Werk. Sie begaben sich auf die Suche nach einem alternativen Grundbaustein, um ein umweltverträgliches Mineralplastik zu entwickeln, das die interessanten Eigenschaften des ursprünglichen Materials beibehält. Und sie wurden fündig.
In ihrer aktuellen Publikation in der Fachzeitschrift Small Methods stellen die Konstanzer Chemiker*innen nun die nächste Generation ihres Mineralplastiks vor. Anstatt aus erdölbasierten Grundbausteinen wie der Polyacrylsäure besteht dieses aus Polyglutaminsäure. Dieses natürliche Biopolymer ist problemlos in großen Mengen verfügbar und kann sogar nachhaltig gewonnen werden, beispielsweise aus biotechnologischer Produktion durch Mikroorganismen. Darüber hinaus gibt es bereits in der Umwelt eine Vielzahl von Mikroorganismen, die Polyglutaminsäure abbauen können.
„Unser neues Mineralplastik hat dieselben positiven Eigenschaften wie das alte, besitzt jedoch den entscheidenden Vorteil, dass sein Grundbaustein – die Polyglutaminsäure – mithilfe von Mikroorganismen hergestellt werden kann und vollkommen biologisch abbaubar ist“, so Cölfen.
Unterstützung von Kollegen aus der Biologie
Um den Nachweis zu erbringen, dass diese biologische Abbaubarkeit auch für das neue Mineralplastik selbst und nicht nur für seine Ausgangkomponenten gilt, holten sich die Chemiker*innen Unterstützung von David Schleheck und Postdoc Harry Lerner vom Fachbereich Biologie der Universität Konstanz. „Herr Cölfen hat in seinem Labor ein neuartiges Mineralplastik entstehen lassen, und unsere Aufgabe war es nun, es mithilfe von Mikroorganismen wieder verschwinden zu lassen“, bemerkt Schleheck mit einem Augenzwinkern.
In entsprechenden Abbauversuchen konnten die Biologen zeigen, dass Mikroorganismen, die beispielsweise in Waldböden zu finden sind, bereits nach wenigen Tagen mit der Verstoffwechslung des Mineralplastiks begannen. Nach nur 32 Tagen hatten die Mikroorganismen den Kunststoff vollständig abgebaut. Es ist den Forschenden also tatsächlich gelungen, das Mineralplastik mit all seinen positiven Materialeigenschaften zusätzlich nachhaltig und sehr gut biologisch abbaubar zu machen.
Faktenübersicht:
– Originalpublikation: I. Avasthi, H. Lerner, J. Grings, C. Gräber, D. Schleheck & H. Cölfen (2023) Biodegradable Mineral Plastics. Small Methods; doi: 10.1002/smtd.202300575
– Konstanzer Studie stellt nachhaltiges und biologisch abbaubares Mineralplastik vor
– Mineralplastik ist härter als gängige Kunststoffe, nicht brennbar und selbstheilend
– Kooperationsprojekt der Fachbereiche Chemie und Biologie der Universität Konstanz
– Förderung: Carl-Zeiss-Stiftung (Projekt INPEW)
Hinweis an die Redaktionen:
Fotos können im Folgenden heruntergeladen werden:
https://www.uni-konstanz.de/fileadmin/pi/fileserver/2023/selbstheilender_kunstst…
Bildunterschrift: Rasterelektronenmikroskopische Aufnahme des neuen Mineralplastiks.
Bilder: © Avasthi et al.; https://doi.org/10.1002/smtd.202300575; Lizenz: CC BY 4.0
https://www.uni-konstanz.de/fileadmin/pi/fileserver/2023/selbstheilender_kunstst…
Bildunterschrift: Schematische Darstellungen der Wechselwirkungen im Mineralplastik. Die geschwungene schwarze Linie entspricht dem Polyglutaminsäure-Rückgrat des Mineralplastiks.
Bilder: © Avasthi et al.; https://doi.org/10.1002/smtd.202300575; Lizenz: CC BY 4.0
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…