Film zeigt lichtabhängige DNA-Reparatur

Das lichtgetriebene Enzym Photolyase repariert DNA-Schäden, die durch UV-Strahlung entstehen. Das Modell zeigt die Bindung der DNA (orange) samt der reparierten Stelle (grün) an das Enzym (blau).
Illustration: Lars-Oliver Essen

Forschungsgruppe aus der Chemie klärt auf, wie Photolyase-Enzyme fehlerhafte Erbsubstanz reparieren.

Zuschauen, wie Licht die Erbsubstanz DNA heilt: Erstmals lässt sich in einem Film mit atomarer Auflösung Schritt für Schritt verfolgen, was passiert, wenn das Enzym DNA-Photolyase einen Schaden in der DNA repariert, der durch ultraviolettes Licht erzeugt wurde.

Ein Team um den Marburger Biochemiker Professor Dr. Lars-Oliver Essen hat mit extrem hoher Zeitauflösung Schnappschüsse des Reparaturprozesses angefertigt und zu einer Filmsequenz zusammengefügt. Die beteiligten Wissenschaftlerinnen und Wissenschaftler berichten im Wissenschaftsmagazin „Science“ über ihre Ergebnisse.

Ultraviolette Strahlung, wie sie im Sonnenlicht vorhanden ist, greift die Erbsubstanz an und bewirkt, dass Schäden an der DNA entstehen. „Am häufigsten kommen Schäden vom so genannten CPD-Typ vor“, erläutert Lars-Oliver Essen von der Philipps-Universität Marburg, einer der Leitautoren der Studie „Dabei handelt es sich um fehlerhafte Verknüpfungen zwischen den Basen der DNA, wodurch die Information des geschädigten DNA-Strangs an diesen Stellen nicht mehr ablesbar ist.“ CPD-Schäden sind die Hauptursache für Sonnenbrand und Hautkrebs beim Menschen.

Aber Licht kann DNA nicht nur zerstören, sondern auch helfen, die entstandenen Fehler zu beseitigen. Photolyase-Enzyme beziehen Energie aus blauem Licht, um die CPD-Schäden auszumerzen, die durch ultraviolette Strahlung entstehen. „Photolyasen bieten fast allen Lebewesen, die der Sonne ausgesetzt sind, einen Schutz gegen UV-Strahlung“, legt der Biochemiker Professor Dr. Ming-Daw Tsai von der Nationalen Taiwanesischen Universität dar, ein weiterer Leitautor.

Studien an Röntgen-Freie-Elektronen-Lasern (XFEL) wie SACLA in Japan erlauben die zeitlich und atomar aufgelöste Analyse des Reparaturprozesses durch blaues Licht.
Studien an Röntgen-Freie-Elektronen-Lasern (XFEL) wie SACLA in Japan erlauben die zeitlich und atomar aufgelöste Analyse des Reparaturprozesses durch blaues Licht. Foto: RIKEN SPring-8 Center

Essen beschäftigt sich seit langem mit dieser Art von lichtgetriebenen Enzymen: „Schon vor 20 Jahren haben wir zum Beispiel die strukturellen Eigenarten entdeckt, denen Photolyasen ihre ungewöhnlich hohe Effizienz für die DNA-Reparatur verdanken“, sagt der Chemiker.

Technische Durchbrüche der letzten zehn Jahre helfen, die Struktur großer Molekülkomplexe aufzuklären: Einerseits Kryo-Elektronenmikroskopie, andererseits zeitaufgelöste serielle Femtosekunden-Kristallographie. „Der Hauptvorteil der Kryo-EM liegt in ihrer Fähigkeit, sehr große Komplexe hochaufgelöst darzustellen“, erklärt Essen. „Femtosekunden-Kristallographie dagegen ermöglicht es, in Echtzeit zu verfolgen, wie sich die Struktur von lichtempfindlichen Makromolekülen wie den Photolyasen und der an sie gebundenen DNA verändert.“

Essen versammelte Fachleute aus aller Welt, um mithilfe der neuen Verfahren den Mechanismus aufzuklären, mit dem die Photolyase einen CPD-Schaden repariert. „Wir fertigten 18 Schnappschüsse zu verschiedenen Zeitpunkten an, die eine zeitliche Auflösung bis runter in den Bereich von 100 Pikosekunden, also einer zehnmilliardstel Sekunde gewährleisten“, erzählt Essens früherer Mitarbeiter Dr. Manuel Maestre-Reyna, der mittlerweile eine Professur an der Nationalen Taiwanesischen Universität innehat und als Erstautor der Studie firmiert.

„Jetzt sieht man erstmals im Film, wie das DNA-Reparaturenzym eine fehlerhafte Bindung nach der anderen am CPD-Schaden knackt, bevor es sich nach getaner Arbeit wieder von der DNA löst“, führt Essen aus. „Unsere Daten decken nun den vollständigen molekularen Mechanismus eines der am weitesten verbreiteten DNA-Reparatursysteme ab“, betont der Biochemiker. „Die Ergebnisse stellen einen Höhepunkt meiner langjährigen Interessen an DNA-Photolyasen und ihrem Reparaturmechanismus dar.“

Lars-Oliver Essen lehrt Biochemie in Marburg. Neben seiner Arbeitsgruppe und den Kolleginnen und Kollegen aus Taiwan um Maestre-Reyna und Tsai, dem Leiter des Taiwanesischen Proteinprojekts, beteiligten sich zahlreiche Fachleute aus Japan, der Schweiz, Frankreich, den USA sowie Italien an der Studie. Die Deutsche Forschungsgemeinschaft und zahlreiche Förderorganisationen aus Taiwan, Japan und den USA unterstützten die zugrundeliegenden Forschungsarbeiten finanziell.

Originalveröffentlichung: Manuel Maestre-Reyna & al.: Watching the entire DNA repair process by a photolyase at atomic resolution in real time, Science 2023, DOI: 10.1126/science.add7795

Weitere Informationen:
Ansprechpartner: Professor Dr. Lars-Oliver Essen,
Arbeitsgruppe Strukturbiochemie
Tel.: 06421 28-22032
E-Mail: essen@chemie.uni-marburg.de

Englischsprachige Pressemitteilung der Academia Sinica, Taiwan: http://www.sinica.edu.tw/en/News_Content/55/1904

https://www.uni-marburg.de/de/aktuelles/news/2023/film-zeigt-lichtabhaengige-dna-reparatur

Media Contact

Johannes Scholten Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…