Cholesterin macht Zellmembranen flexibel und robust

Prof. Dr. Rainer Böckmann: „Durch die Studie verstehen wir besser, wie Cholesterin die Zellkommunikation und die Stoffaufnahme beeinflusst“. (Bild: Computational Biology)

Computerbiologen der FAU entdecken neuen Mechanismus.

Cholesterin spielt eine entscheidende Rolle für die Elastizität von Zellmembranen. Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben nun eine bemerkenswerte Doppelfunktion von Cholesterin entdeckt: Es trägt nicht nur dazu bei, die Membran dicker und damit undurchlässiger zu machen, sondern zugleich auf überraschende Weise auch weicher. Diese neue Erkenntnis, veröffentlicht im renommierten Fachjournal „Nature Communications“, eröffnet neue Perspektiven für die Membranforschung und potentielle Anwendungen in der Biotechnologie.*

Mit einem Anteil von bis zu 40 Prozent ist Cholesterin essentiell für die Struktur, die Elastizität und die vielfältigen Funktionen von Zellmembranen. Zellmembranen dienen als Barrieren, die das Zellinnere vom äußeren Umfeld trennen und den selektiven Transport von Stoffen in die und aus der Zelle regulieren. „Frühere Experimente haben gezeigt, dass die Hauptbausteine der Membran, die Lipide, durch das Cholesterin komprimiert werden“, sagt Prof. Dr. Rainer Böckmann, Leiter der Arbeitsgruppe Computational Biology am Department Biologie der FAU. „Dadurch wird die Membran dicker und weniger durchlässig.“

Die Forscher stellten mittels Computersimulationen fest, dass die Wirkung von Cholesterin von der Lipidzusammensetzung der Membran abhängt: In gesättigten Membranen bewirkt es eine Versteifung, in ungesättigten Membranen erhöht es die Flexibilität. Dies führt zu einer scheinbar widersprüchlichen Situation, in der die Membranen gleichzeitig dicker und weicher werden. Die vom Zentrum für Nationales Hochleistungsrechnen Erlangen (NHR@FAU) unterstützten Computersimulationen zeigen, dass sich dieses Phänomen durch die erhöhte Beweglichkeit des Cholesterins in ungesättigten Membranen erklären lässt.

Diese Entdeckung hat weitreichende Bedeutung für eine Vielzahl biologischer Prozesse an der Zellmembran. „Durch die Studie verstehen wir besser, wie Cholesterin die Zellkommunikation und die Stoffaufnahme beeinflusst“, erklärt Rainer Böckmann. Auch wenn es sich hier um Grundlagenforschung handelt, könnte der entdeckte Mechanismus wichtige Implikationen für die Biotechnologie haben, insbesondere bei der Entwicklung von künstlichen Membranen mit verbesserten physikalischen Eigenschaften.

* https://doi.org/10.1038/s41467-023-43892-x

Ansprechpartner für Medien:
Prof. Dr. Rainer Böckmann
Professur für Computational Biology
Tel.: 09131/85-25409
rainer.boeckmann@fau.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rainer Böckmann
Professur für Computational Biology
Tel.: 09131/85-25409
rainer.boeckmann@fau.de

Originalpublikation:

https://doi.org/10.1038/s41467-023-43892-x

https://www.fau.de/2023/12/news/wissenschaft/cholesterin-macht-zellmembranen-flexibel-und-robust/

Media Contact

Blandina Mangelkramer Presse und Kommunikation
Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Parkinson-Medikament verändert durch Eisenmangel das Darmmikrobiom zum Schlechteren

Störung der mikrobiellen Gemeinschaft begünstigt Krankheitserreger im Darm. In einer bahnbrechenden neuen Studie, durchgeführt im Rahmen des FWF-geförderten Exzellenzclusters „Mikrobiomes drive Planetary Health“, haben Wissenschafter*innen der Universität Wien in Zusammenarbeit…

Neues Verfahren zur Rückgewinnung wertvoller Elemente aus Holzasche

Team der Hochschule Rottenburg und der Universität Tübingen erarbeitet Grundlagen zur Aufbereitung des bisherigen Verbrennungsabfalls als Sekundärrohstoff. Die Aschen, die bei der Holzverbrennung in Heiz- und Kraftwerken entstehen, enthalten wertvolle…

Auf der Spur des „Schlüsselproteins“

Neues Forschungsprojekt zur Ursache von Lungenhochdruck bei Herzinsuffizienz. Pulmonale Hypertonie (PH) ist eine schwerwiegende Erkrankung, bei der der Druck in den Blutgefäßen zwischen Herz und Lunge dauerhaft erhöht ist. Besonders…