Biomoleküle im Nanomaßstab identifiziert

Die chemisch sensitive Messspitze des Rastertunnelmikroskops (lila Kugel an gelber Pfeilspitze) erkennt spezifische Aminosäuren in einer Peptidkette, vergleichbar mit einzelnen Informationen auf einem Filmstreifen.
(c) Institut für Angewandte Physik IAP/TU Braunschweig

TU Braunschweig stellt neue Messmethode für Aminosäuren vor.

Ein Team von Wissenschaftler*innen hat erstmals einzelne Aminosäuren in einem Peptid, einer Verknüpfung mehrerer Aminosäuren, auf Einzelmolekülbasis auf der Oberfläche identifizieren können. Damit kann jetzt einer der Grundbausteine des Lebens auf den Nanometer genau untersucht werden. Unter der Leitung von Professorin Uta Schlickum der Technischen Universität Braunschweig entwickelte die Gruppe im Exzellenzcluster QuantumFrontiers eine neue Messmethode, die sie in der Fachzeitschrift „Nature Communications“ veröffentlichten.

Der Unterschied von Peptid zu Protein wirkt etwas willkürlich gewählt und hängt ausschließlich von der Größe ab: Solange nicht mehr als etwa 100 Aminosäuren zusammen eine Kette bilden, ist es ein Peptid. Sobald es mehr werden, spricht die Biologie von Proteinen. In biologischen Prozessen tauchen die Peptide an allen möglichen Stellen auf. Etwa als Hormon oder als Antibiotikum. Doch wie Peptide genau funktionieren, ist bisher nur in Ansätzen erforscht. Auch weil kein Mikroskop die biologischen Bauteile einzelner Peptide aufs Atom genau abbilden kann.

Das Forschungsteam um Professorin Uta Schlickum kombinierte verschiedene Methoden, um ein Rastertunnelmikroskop für die Peptid-Erkennung nutzbar zu machen. An sich sind diese Mikroskope zwar aufs Atom genau, können aber verschiedene Elemente einer molekularen Struktur nicht auseinanderhalten. Nun ist es in einer Zusammenarbeit zwischen der TU Braunschweig, dem Max-Planck-Institut für Festkörperforschung in Stuttgart und weiterer internationaler Wissenschaftler*innen gelungen, die Messspitze des bildgebenden Geräts chemisch sensitiv zu machen und auf eine der Aminosäuren im Peptid zu spezialisieren. Mit dieser neuartigen Spitze sind erstmals einzelne Aminosäuren der komplexen biologischen Ketten unterm Mikroskop sicht- und identifizierbar. Ein erster Schritt für die Sequenzierung von Peptiden auf Oberflächen bei höchster räumlicher Auflösung.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Uta Schlickum
Technische Universität Braunschweig
Institut für Angewandte Physik
Mendelssohnstraße 2
38106 Braunschweig
Tel.: 0531 391-8503
E-Mail: u.schlickum@tu-braunschweig.de
www.tu-braunschweig.de/iap

Originalpublikation:

Molecular sensitised probe for amino acid recognition within peptide sequences
Xu Wu, Bogdana Borca, Suman Sen, Sebastian Koslowski, Sabine Abb, Daniel Pablo Rosenblatt, Aurelio Gallardo, Jesús I. Mendieta-Moreno, Matyas Nachtigall, Pavel Jelinek, Stephan Rauschenbach, Klaus Kern & Uta Schlickum
Nature Communications volume 14, Article number: 8335 (2023) Cite this article. https://doi.org/10.1038/s41467-023-43844-5

https://www.tu-braunschweig.de/

Media Contact

Regina Eckhoff Presse und Kommunikation
Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Potenzial alter Elektroautos nutzen

Bundesministerium für Bildung und Forschung fördert neues Graduiertenkolleg Circular E-Cars. Recycling als Chance für das Rheinische Revier. Weil in Elektroautos (E-Cars) im Vergleich zu herkömmlichen Automobilen deutlich mehr wertvolle Nichteisenmetalle…

Forscher erzeugen eindimensionales Gas aus Licht

Physiker der Universität Bonn und der Rheinland-Pfälzisch Technischen Universität Kaiserslautern-Landau (RPTU) haben ein eindimensionales Gas aus Licht erzeugt. Damit konnten sie erstmals theoretische Vorhersagen überprüfen, die für den Übergang in…

Zwergplanet Ceres: Ursprung im Asteroidengürtel?

Hellgelbe Ablagerungen im Consus Krater zeugen von Ceres‘ kryovulkanischer Vergangenheit – und beleben die Diskussion um ihren Entstehungsort neu. Der Zwergplanet Ceres könnte seinen Ursprung im Asteroidengürtel haben – und…

Partner & Förderer