Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.
Lithium-Ionen-Akkus (LIB) besitzen die höchstmögliche Energiedichte pro Kilogramm, aber die Lithium-Ressourcen sind begrenzt. Natrium dagegen ist praktisch unbegrenzt vorhanden und ist bezogen auf die Energiedichte die zweitbeste Option. Natrium-Ionen-Akkus (englisch Sodium-Ion-Batteries oder SIB) wären daher eine gute Alternative, vor allem, wenn das Gewicht der Akkus keine große Rolle spielt, etwa bei stationären Energiespeichern.
Fachleute sind davon überzeugt, dass sich die Kapazität dieser Akkus durch ein gezieltes Materialdesign der Kathoden noch deutlich steigern ließe. Besonders vielversprechend sind Kathodenmaterialien aus geschichteten Übergangsmetalloxiden mit den Elementen Nickel und Mangan (NMO-Kathoden). Sie bilden Wirtsstrukturen, in welchen die Natrium-Ionen während der Entladung gespeichert und beim Laden wieder freigesetzt werden. Dabei besteht jedoch die Gefahr von chemischen Reaktionen, die zwar zunächst die Kapazität verbessern, dann aber lokale Strukturveränderungen auslösen und so das Kathodenmaterial degradieren: Dies hat zur Folge, dass sich die Lebensdauer der Natrium-Ionen-Akkus verringert.
„Wir brauchen aber eine hohe Kapazität bei hoher Stabilität“, sagt Dr. Katherine Mazzio, die in der gemeinsamen Forschungsgruppe Operando-Batterie-Analyse am HZB und der Humboldt-Universität zu Berlin unter der Leitung von Prof. Philipp Adelhelm arbeitet. Ihr Doktorand Yongchun Li hat nun untersucht, wie sich die Dotierung mit fremden Elementen auf die NMO-Kathoden auswirkt. Dabei wählten sie für das Doping Elemente aus, die ähnliche Ionenradien wie Nickel (Ni2+) besitzen, aber einen unterschiedlichen Valenzzustand: Magnesium (Mg2+)-Ionen oder Scandium-Ionen (Sc3+).
Um den Einfluss der beiden Elemente zu entschlüsseln, mussten sie Experimente an drei verschiedenen Röntgenquellen durchführen. An BESSY II untersuchten sie die Proben mit resonanter inelastischer Röntgenstreuung (RIXS) und Röntgenabsorptionsspektroskopie (XAS) im weichen und harten Röntgenbereich, an PETRA III bewerteten sie Strukturveränderungen mit Röntgenbeugung (XRD) weiteren Analysen mit harter Röntgenstrahlung, und für genauere Einblicke in das Element Magnesium führten sie Untersuchungen an der PIRX-Beamline bei SOLARIS durch.
„Die Ergebnisse haben uns überrascht“, erklärt Mazzio. Obwohl die Dotierung mit Scandium zu weniger Strukturveränderungen während des elektrochemischen Zyklus führt als die Dotierung mit Magnesium, verbessert sie die Stabilität nicht. „Bisher dachte man, dass die Unterdrückung von Phasenübergängen (und damit von Volumenänderungen) auch die Leistungsfähigkeit des Kathodenmaterials über viele Zyklen hinweg verbessern würde. Aber das ist nicht genug.“
Die Dotierung mit Magnesium unterdrückt die Sauerstoff-Redoxreaktion in NMO noch stärker. Dies war ebenfalls unerwartet, da Magnesium dafür bekannt ist, eine Sauerstoff-Redox-Reaktion in geschichteten Manganoxiden auszulösen. „Wir haben verschiedene Mg/Ni-Verhältnisse in NMO analysiert und festgestellt, dass die Sauerstoff-Redoxreaktion bei einem Verhältnis nahe 1 ein Minimum erreicht“, erklärt Mazzio. „Nur durch die Kombination von diesen unterschiedlichen Röntgentechniken konnten wir zeigen, dass nicht nur die Unterdrückung von Phasenübergängen wichtig ist, um die langfristige Zyklen-Stabilität zu sichern, sondern dass auch das Zusammenspiel zwischen der Redoxaktivität von Nickel und Sauerstoff die Leistung bestimmt“, sagt Mazzio.
Wissenschaftliche Ansprechpartner:
Dr. Katherine Mazzio, katherine.mazzio@helmholtz-berlin.de
Prof. Dr. Philipp Adelhelm, philipp.adelhelm@helmholtz-berlin.de
Originalpublikation:
Advanced Materials (2024)
Competing mechanisms determine oxygen redox in doped Ni-Mn based layered oxides for Na-ion batteries
Yongchun Li, Katherine A. Mazzio, Najma Yaqoob, Yanan Sun, Annica I. Freytag, Deniz Wong, Christian Schulz, Volodymyr Baran, Alba San Jose Mendez, Götz Schuck, Marcin Zając, Payam Kaghazchi, Philipp Adelhelm
DOI: 10.1002/adma.202309842
https://onlinelibrary.wiley.com/doi/10.1002/adma.202309842
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=26226&sprache=de&seitenid=1
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…