Gute Aussichten für Altermagnete in der spinbasierten Elektronik

Kristallstruktur von altermagnetischem CrSb: Die farbigen Blasen um die Cr-Atome (kleine blaue Kugeln) entsprechen Iso-Spindichteflächen. Ihre Anisotropie ermöglicht spinpolarisierte Ströme.
Abb./©: Libor Šmejkal und Anna Birk Hellenes / JGU

Verbindung CrSb zeigt vielversprechende Eigenschaften für elektronische Anwendungen.

Altermagnete stellen eine neue Materialklasse im Magnetismus dar, die neue Anwendungen in der spinbasierten Elektronik ermöglichen könnte. Ihr magnetisch geordneter Zustand besteht aus einer antiparallelen Anordnung von mikroskopischen magnetischen Momenten, den Spins, so wie bei Antiferromagneten. Im Gegensatz zum Antiferromagnetismus ermöglicht der altermagnetische Zustand ohne Nettomagnetisierung jedoch die Erzeugung elektrischer Ströme mit einer Spinpolarisation, wie sie in der spinbasierten Elektronik benötigt wird. Damit vereinen Altermagnete die Vorteile von Antiferromagneten, das heißt eine ultraschnelle Dynamik, und Ferromagneten, also eine große Spinpolarisation.

In Zusammenarbeit mit einem Theorie-Team unter der Leitung von Prof. Dr. Jairo Sinova und Dr. Libor Šmejkal haben die Experimentalphysikerin Dr. Sonka Reimers und ihre Kollegen des Kläui-Labors an der Johannes Gutenberg-Universität Mainz (JGU) in einer intermetallischen Chrom-Antimon-Verbindung – CrSb – eine altermagnetische elektronische Bandaufspaltung in Verbindung mit Spinpolarisation nachgewiesen. „Die Größe dieser Aufspaltung, die in einem guten Leiter und bei Raumtemperatur beobachtet wurde, ist außergewöhnlich und vielversprechend im Hinblick auf elektronische Anwendungen altermagnetischer Materialien“, sagt Prof. Dr. Martin Jourdan, Koordinator der Studie, die in Nature Communications veröffentlicht wurde.

Bildmaterial:
https://download.uni-mainz.de/presse/08_physik_komet_altermagnetismus_crsb.jpg
Kristallstruktur von altermagnetischem CrSb: Die farbigen Blasen um die Cr-Atome (kleine blaue Kugeln) entsprechen Iso-Spindichteflächen. Ihre Anisotropie ermöglicht spinpolarisierte Ströme.
Abb./©: Libor Šmejkal und Anna Birk Hellenes / JGU

Weiterführende Links:
https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui-Lab am Institut für Physik
https://www.iph.uni-mainz.de/ – Institut für Physik an der JGU

Wissenschaftliche Ansprechpartner:

Prof. Dr. Martin Jourdan
Physik der Kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23635
E-Mail: jourdan@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/martin-jourdan/

Originalpublikation:

Sonka Reimers et al.
Direct observation of altermagnetic band splitting in CrSb thin films
Nature Communications, 8. März 2024
DOI: 10.1038/s41467-024-46476-5
https://www.nature.com/articles/s41467-024-46476-5

https://presse.uni-mainz.de/news/

Media Contact

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

3D-Tumormodell für Retinoblastomforschung mit Fokus auf Tumor-Umgebungs-Interaktionen.

Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut

Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…

Private Brunnen als Notwasserversorgung zur Stärkung der Katastrophenresilienz.

Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half

Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…

DNA Origami-Strukturen steuern biologische Membranen für gezielte Medikamentenabgabe

Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können

Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…