Wie molekulare Spezifität zustande kommt

Hannes Schihada erforscht in seiner Marburger Emmy-Noether-Nachwuchsgruppe, wie die Spezifität molekularer Signale zustande kommt.
(c) Markus Farnung / Philipps-Universität Marburg

Mehr als „an“ und „aus“: Deutsche Forschungsgemeinschaft bewilligt neue Emmy-Noether-Gruppe an der Philipps-Universität.

Wie passen viele Signale durch wenige Kanäle? Eine neue Emmy-Noether-Nachwuchsgruppe an der Philipps-Universität Marburg erforscht, wie eine begrenzte Anzahl von G-Proteinen eine große Vielfalt an zellulären Reaktionen auslösen kann. Der Pharmakologe Dr. Hannes Schihada erhält für zwei dreijährige Förderperioden 1,9 Millionen Euro von der Deutschen Forschungsgemeinschaft, um seine Forschungsgruppe aufzubauen.

Um Reize aus der Umgebung aufzunehmen, verfügen Zellen über Rezeptoren auf ihrer Oberfläche. Diese Rezeptoren geben die Reize von außen an Moleküle im Zellinneren weiter, die das Signal wiederum kaskadenartig weiterreichen, um eine angemessene Reaktion der Zelle auszulösen. Fachleute sprechen hierbei von Signalweiterleitung oder -transduktion.

Zu den bekanntesten Molekülen in solchen Signalketten zählen G-Proteine. Eine große Anzahl von Rezeptoren leitet ihr Signal über G-Proteine weiter, weshalb man von G-Protein-gekoppelten Rezeptoren oder GPCR spricht. „Mehr als 30 Prozent der zugelassenen Medikamente zielen auf solche Rezeptoren“, erklärt Gruppenleiter Schihada.

Man kennt mehr als 800 solcher Rezeptoren, die unterschiedlichste Reize aufnehmen. Ihnen stehen bedeutend weniger G-Proteine gegenüber, die Signale weiterleiten. Wie können diese wenigen G-Proteine die Vielfalt der Reize in eine ebenso große Zahl an spezifischen Reaktionen der Zelle überführen?

Bisher weiß man von G-Proteinen, dass sie ihre räumliche Gestalt ändern, wenn sie vom inaktiven in den aktiven Zustand übergehen und umgekehrt, „wie bei einer Schere, die man erst aufklappt, um mit ihr zu schneiden“, erläutert Schihada. Die Fachleute sprechen von einer Konformationsänderung, die zum Beispiel dazu dient, dass ein Protein ein anderes Molekül in sich aufnehmen kann. „Nach dem bislang gängigen Konzept kennen G-Proteine zwei Zustände“, sagt der Wissenschaftler: „an und aus“.

Der Pharmakologe legt seiner Nachwuchsgruppe eine andere These zugrunde. Schihada erklärt: „Es gibt unterschiedliche ‚an‘-Zustände, die eine Vielzahl an Signalen ermöglichen; dadurch kommt deren Spezifität zustande. Analog zu einer Lampe, die nicht nur an- oder ausgeschaltet sein kann, sondern sogar in unterschiedlichen Farben leuchten kann.“

Um die vermutete Zustandsvielfalt zu erforschen, setzt Schihada auf die Entwicklung von Sensorsystemen in lebenden Zellen. Hierfür nutzt der Pharmakologe Farbstoffe, die er an das zu untersuchende Molekül koppelt. Um im Bild der Schere zu bleiben: Der Farbstoff wird mit dem Gelenkteil des Proteins verbunden. Je nachdem, in welchem Zustand sich dieses befindet, leuchtet es stärker oder schwächer. Ziel ist eine Charakterisierung der Proteine durch Ausmessung mit verschiedenen Sensoren: ein „Fingerabdruck“ der G-Proteine.

„Ich habe in meiner bisherigen Forschungsarbeit schon viel Erfahrung mit der Entwicklung von Sensoren gesammelt“, erzählt Schihada; „wir haben eine Handvoll solcher Sensoren entwickelt, wenngleich nicht mit dem Fokus auf G-Proteinen, sondern auf die vorgeschalteten Rezeptoren.“

Dr. Hannes Schihada gehört derzeit als Postdoc-Stipendiat der Arbeitsgruppe von Professor Dr. Peter Kolb am Institut für Pharmazeutische Chemie der Philipps-Universität Marburg an. Der Oberpfälzer studierte Pharmazie in Regensburg, wo er das Staatsexamen der Pharmazie erwarb und zum Apotheker approbiert wurde. Im Jahr 2019 erlangte er seinen naturwissenschaftlichen Doktorgrad an der Universität Würzburg, anschließend verbrachte er einen zweieinhalbjährigen Forschungsaufenthalt am Karolinska-Institut in Stockholm.

Das Emmy-Noether-Programm eröffnet Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern wie Schihada die Möglichkeit, sich durch die eigenverantwortliche Leitung einer Nachwuchsgruppe über einen Zeitraum von sechs Jahren für eine Hochschulprofessur zu qualifizieren. Für das neue Marburger Team sind eine Postdoktorandenstelle sowie drei Doktorandenstellen vorgesehen.

Wissenschaftliche Ansprechpartner:

Dr. Hannes Schihada
Institut für Pharmazeutische Chemie
Tel.: 06421 28-21351
E-Mail: hannes.schihada@uni-marburg.de

https://www.uni-marburg.de/de/aktuelles/news/2024/wie-molekulare-spezifitaet-zustande-kommt

Media Contact

Anne Reichel Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…