Mittels KI: Genauere Prognosen für bestmögliche Therapien

Prof. Dr. Dr. Sebastian Haferkamp, Dr. Gunther Glehr und Prof. Dr. Dr. James Hutchinson (v.li.) haben gemeinsam ein KI-basiertes System entwickelt, um nicht-klassifizierbare Proben herauszufiltern und somit noch genauere Diagnosen stellen zu können.
Foto: Vincent Schmucker / © UKR

In Zukunft werden personalisierte medizinische Diagnosen auf großen Datenmengen basieren. Ärzte werden viele „Biomarker“ messen, um Erkrankungen zu bestätigen oder auszuschließen. Dabei werden viele Daten gesammelt, welche aber auch Fehlinformationen enthalten können. Forscher des Universitätsklinikums Regensburg (UKR) entwickelten daher ein auf künstlicher Intelligenz basierendes System, um nicht-klassifizierbare Proben herauszufiltern. Dadurch könnten genauere und individuellere Diagnosen gestellt werden.

„Wenn wir Biomarker in großen Gruppen von Patienten und gesunden Kontrollpersonen messen, finden wir typischerweise Wertebereiche ohne nützliche Informationen, um jemanden als gesund oder krank zu klassifizieren“, erklärt Dr. Gunther Glehr, wissenschaftlicher Mitarbeiter der Experimentellen Chirurgie in der Klinik und Poliklinik für Chirurgie des UKR, den Ausgangspunkt der Forschungsarbeit. Dabei stellen eben diese nicht-informativen Proben die Mediziner vor besondere Probleme, wenn es darum geht, eine genaue medizinische Diagnose zu stellen.

Um dieses Problem zu lösen, setzen die Forscher eine Berechnungsmethode ein, bei der Gruppen von Proben in klassifizierbare und nicht-klassifizierbare Teilmengen aufgeteilt werden. Ziel ist es, die nicht aussagekräftigen Proben auszuschließen, wodurch sich darauffolgende Diagnosemodelle verbessern. „Genauere Prognosen helfen uns, die beste Therapie für den einzelnen Patienten zu finden“, sagt Professor Dr. Sebastian Haferkamp, Facharzt für Dermatologische Onkologie der Klinik und Poliklinik für Dermatologie des UKR. So waren die Forscher etwa in der Lage, eine Untergruppe von Hautkrebspatienten zu identifizieren, bei welchen schwere Behandlungsnebenwirkungen auftreten würden.

„Gesundheit ist ein streng reguliertes Gleichgewicht“

„Die Tatsache, dass es bei so vielen verschiedenen Krankheitsmarkern informative und nicht-informative Bereiche gibt, spiegelt das Wesen von Krankheiten wider. Gesundheit ist ein streng reguliertes Gleichgewicht, während Krankheit Dysregulation und größere Variabilität bedeutet“, sagt Professor Dr. Dr. James Hutchinson, wissenschaftlicher Mitarbeiter und Forschungsleiter der Experimentellen Chirurgie in der Klinik und Poliklinik für Chirurgie des UKR. Die Forscher fanden heraus, dass genau diese Unterschiede in der Variabilität häufig zu nicht-klassifizierbaren Proben führen. Eine Einschränkung von Datensätzen ist daher eine wirksame Methode, um die Suche und Interpretation von Biomarkern zu unterstützen.

Die Studie wurde vom Bayerische Zentrum für Krebsforschung (BZKF) und von der Bristol Myers Squibb Immune Oncology Foundation mitfinanziert. Die Studienergebnisse wurden im Fachmagazin Nature Communications (https://www.nature.com/articles/s41467-024-49094-3) veröffentlicht.

Originalpublikation:

https://www.nature.com/articles/s41467-024-49094-3

http://www.ukr.de

Media Contact

Matthias Dettenhofer Unternehmenskommunikation
Universitätsklinikum Regensburg (UKR)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…