Neuartige Oberflächenchemie für Biosensoren
Im Rahmen des PAMELA-Projekts haben sich Forscher auf die optimale Empfindlichkeit und Reproduzierbarkeit von Sensoren konzentriert und in diesem Zusammenhang eine innovative Oberflächenchemie entwickelt, die auf selbstorganisierten Monoschichten (SAM) basiert.
Eines der Hauptziele war die Entwicklung eines Biosensors, der eine extrem hohe Empfindlichkeit von 4ng/ml Blut hat. Damit können ein Wettbewerbsvorsprung für die Biosensorindustrie sowie unzählige Vorteile im Bereich immundiagnostischer Untersuchungen erzielt werden. Das Ziel einer erhöhten Emfpindlichkeit bei Biosensormessungen war nicht der einzige Faktor, der die Entwicklung einer Biosensor-Wandleroberfläche beeinflusste.
Die steigende Nachfrage nach einer verstärkten Miniaturisierung von Biosensorwandlern entlang ihrer aktiven Bereiche brachte ebenfalls neue Anforderungen mit sich. Darüber hinaus musste eine Lösung für die Stabilität und Reproduzierbarkeit unter verschiedenen Anwendungsmöglichkeiten für Biosensorschnittstellen gefunden werden. Hierbei handelt es sich um die Schnittstelle zwischen der anorganischen Wandleroberfläche und den biologischen Affinitätselementen. Deshalb wurde dem Prozess der Kopplung von Biomolekülen mit der Wandleroberfläche besondere Aufmerksamkeit gewidmet.
Die Forscher haben sich dieser Herausforderung gestellt und regulierte dünne Filmstrukturen vorbereitet, mit denen die Bioaffinitäts-Elemente exakt gruppiert und angeordnet werden konnten. Damit konnten reproduzierbare und kontrollierte geometrische Umgebungen geschaffen werden. Unter Anwendung von selbstorganisierten Monoschichten (SAM-Self-Assembled Monolayer) beschäftigte sich die neuartige Oberflächenchemie mit der kovalenten Bindung von Antikörpern auf Metall (meist Au) und auf Oxidoberflächen (hauptsächlich SiO2 und Ta2O5). Die Wandleroberflächen der affinitätsbasierten Biosensoren bestanden aus Metallen bzw. Oxidmaterialien.
Durch die Ablagerung von aus Thiolverbindungen bestehenden SAM-Mischungen auf reinem Gold wurden bioreaktive Goldoberflächen hergestellt. Die zwei verwendeten Thiolarten gleichen die Bindung der Rezeptormoleküle (die Antikörper) und die Minimierung der unspezifischen Adsorption von unerwünschten Biospezies aus. Diese einmalige Oberflächenchemie für eine erhöhte Biosensorleistung gewährleistet eine hochspezifische Interaktion zwischen dem Analyt und immobilisierten Antikörpern. Für eine Zusammenarbeit werden Partner mit unterschiedlichen Fachkenntnissen gesucht. Diese sollten sich entweder mit der Gestaltung, Synthese, Ablagerung und Charakterisierung von neuartigen Oberflächenchemien auf Grundlage gemischter SAM-Techniken bzw. mit der Entwicklung von Untersuchungen für die angestrebten Biosensoranwendungen beschäftigen.
Media Contact
Weitere Informationen:
http://www.imec.beAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut
Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…
Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half
Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…
Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können
Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…