Schwarze Löcher in der Radarfalle

Künstlerische Darstellung des relativistischen Materiestroms um ein schnell rotierendes Schwarzes Loch im Zentrum einer Akkretionsscheibe (orange). Das Licht der Atome, die auf den Beobachter zu fliegen, ist zu kürzeren Wellenlängen (blau) verschoben und wesentlich heller als das Licht auf jener Seite, die sich vom Beobachter entfernt (rot). Bild: Max-Planck-Institut für extraterrestrische Physik

Forscher messen mit dem Röntgensatelliten XMM-Newton in der Umgebung der Massemonster relativistische Geschwindigkeiten

Astronomen ist es gelungen, die von Einsteins Relativitätstheorie vorhergesagten Effekte im Gravitationsfeld Schwarzer Löcher nachzuweisen. Mit dem europäischen Röntgenobservatorium XMM-Newton untersuchten die Forscher unter Leitung von Günther Hasinger, Direktor am Max-Planck-Institut für extraterrestrische Physik in Garching bei München, das Licht des kosmischen Röntgenhintergrunds – die vereinte Strahlung Schwarzer Löcher, die in den Zentren weit entfernter aktiver Galaxien sitzen. Als Indiz diente der „Fingerabdruck“ von Eisen: Im addierten Spektrum von rund 100 jungen Milchstraßensystemen beobachteten die Wissenschaftler eine verbreiterte, asymmetrische Linie. Deren Form passt exakt zu den Aussagen der Relativitätstheorie (Astronomy & Astrophysics, vol. 432(2), März 2005).

Der gesamte Himmel ist von einem diffusen, hoch energetischen Leuchten erfüllt: der kosmischen Röntgenhintergrund-Strahlung. In den vergangenen Jahren haben die Astronomen gezeigt, dass diese Strahlung fast vollständig von einzelnen Objekten stammt. Ähnliches gelang Galileo Galilei, als er Anfang des 17. Jahrhunderts mit seinem Fernrohr die Milchstraße erstmals in einzelne Sterne auflöste. Im Fall des Röntgenhintergrunds handelt es sich um hunderte Millionen Schwarzer Löcher, die in weit entfernten Milchstraßensystemen gerade „gefüttert“ – also mit Materie versorgt – werden. Weil die Schwarzen Löcher dabei an Masse zulegen, sehen wir im Röntgenhintergrund deren Wachstumsphase. Im heutigen Universum stecken massereiche Schwarze Löcher im Zentrum nahezu aller Galaxien.

Wenn Materie in den Schlund eines Schwarzen Lochs stürzt, rast sie in dem kosmischen Mahlstrom der Akkretionsscheibe fast mit Lichtgeschwindigkeit herum und heizt sich dabei so stark auf, dass sie kurz vor ihrem endgültigen Verschwinden hoch energetische Strahlung als eine Art letzten Hilfeschrei ausstößt. Werden sie im Zentrum aktiver Galaxien gut genährt, gehören die eigentlich unsichtbaren Schwarzen Löcher daher zu den leuchtkräftigsten Objekten im All. Die chemischen Elemente in der Materie senden Röntgenlicht bei charakteristischen Wellenlängen aus und lassen sich so durch ihren spektralen Fingerabdruck identifizieren. Besonders gut geeignet sind die Atome des Eisens, da dieses Metall im Kosmos am häufigsten vorkommt, bei sehr hohen Temperaturen besonders intensiv strahlt und im Spektrum eine deutliche Spur (eine Linie) zeigt.

Ähnlich wie die Polizei Schnellfahrer mittels Radarfallen stellt, weisen Astronomen die extrem hohen Geschwindigkeiten, mit denen die Eisenatome ein Schwarzes Loch umkreisen, durch eine Wellenlängenverschiebung des Lichts nach. Diesem relativistischen Doppler-Effekt überlagert sich wegen der großen Masse von Schwarzen Löchern die so genannten Gravitationsrotverschiebung – beides Phänomene, wie sie die Relativitätstheorie fordert. So postuliert die Spezielle Relativitätstheorie, dass schnell bewegte Uhren langsamer laufen; nach der Allgemeinen Relativitätstheorie gilt dies auch für Uhren in der Nähe großer Massen. Auf die elektromagnetische Strahlung übertragen heißt das: Die Wellenlänge des von Eisenatomen ausgesandten Lichts wird in den langwelligen, roten Teil des Spektrums verschoben. Dabei ergibt sich eine verbreiterte, asymmetrische Linienform – gleichsam ein verschmierter Fingerabdruck.

Blickt man von der Seite auf die in der Akkretionsscheibe um ein Schwarzes Loch herumrasende Materie (Abb. 1), erscheint das Licht der sich auf uns zu bewegenden Eisenatome stark ins Blaue verschoben und wesentlich heller als das jener Atome, die sich von uns entfernen. Die relativistischen Effekte sind umso stärker, je näher die Materie dem Schwarzen Loch kommt. Wegen der verzerrten Raumzeit sind sie am stärksten bei sehr schnell rotierenden Schwarzen Löchern. In den vergangenen Jahren gelangen Messungen relativistischer Eisenlinien an wenigen, nahe gelegenen aktiven Galaxien; zum ersten Mal wurden die Astronomen 1995 mit dem japanischen Satelliten ASCA fündig.

Nun haben Forscher um Günther Hasinger, Xavier Barcons vom spanischen Instituto de Física de Cantabria und Andy Fabian von der britischen Universität Cambridge den oben beschriebenen relativistisch verschmierten Fingerabdruck der Eisenatome auch im Röntgenhintergrund aufgespürt, also im Licht von Schwarzen Löchern in den Zentren weit entfernter Galaxien (Abb. 2). Dazu richteten die Forscher das Observatorium XMM-Newton der europäischen Raumfahrtagentur ESA insgesamt mehr als 500 Stunden auf einen Himmelsauschnitt in der Konstellation Großer Wagen.

Wegen der Ausdehnung des Universums bewegen sich die Galaxien umso schneller von uns fort, je weiter entfernt sie sind. Diese unterschiedlich hohen Fluchtgeschwindigkeiten lassen die Spektrallinien bei verschiedenen Wellenlängen erscheinen. Daher mussten die Astronomen das Röntgenlicht sämtlicher Galaxien zunächst auf das Ruhesystem unserer Milchstraße korrigieren und erhielten damit eine absolute Bezugsgröße. Dafür wurden mit dem amerikanischen Keck-Teleskop auf Hawaii Geschwindigkeitsmessungen für mehr als 100 Objekte durchgeführt. Als die Forscher deren Licht addiert hatten, zeigte sich ein unerwartet starkes Signal – und die charakteristisch verbreiterte Form der Eisenlinie.

Aus der Stärke des Röntgensignals schlossen die Astronomen unter anderem auf die Anzahl der Eisenatome innerhalb der Materie. Überraschenderweise ist die chemische Häufigkeit von Eisen im „Futter“ dieser jungen Schwarzen Löcher etwa dreifach größer als in unserem wesentlich später entstandenen Sonnensystem. Die Zentren der Galaxien im frühen Universum hatten also eine außerordentlich effiziente Methode, Eisen zu produzieren – möglicherweise, weil in aktiven Galaxien besonders viele massereiche Sterne die chemischen Elemente bis hin zum Eisen vergleichsweise schnell erbrüten.

Die Breite der Linie lässt darauf schließen, dass die Eisenatome dem Schwarzen Loch sehr nahe kommen und deshalb die meisten Schwarzen Löcher im Weltall vermutlich schnell rotieren. Denn diese Schwarzen Löcher reißen den sie umgebenden Raum mit wie ein Rührwerk den Teig. Deshalb kann Materie, die in der selben Richtung um ein Schwarze Loch fliegt, näher an das Massemonster gelangen, ohne hineinzufallen. Und so sieht man hier höhere Geschwindigkeiten und eine größere Gravitationsrotverschiebung. Dieser Befund ergibt sich auch, wenn man das Licht im Röntgenhintergrund mit der gesamten Masse der „schlafenden“ Schwarzen Löcher in den Zentren der Galaxien vergleicht, wie das kürzlich mehrere Forschergruppen getan haben.

Media Contact

Dr. Andreas Trepte idw

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…

Genetische Analyse zeigt neue Risikofaktoren für Depression in verschiedenen Bevölkerungsgruppen

Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien

Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…