Internationalem Forscherteam mit Freiburger Physikern gelingt Nachweis von Doppelt-Strange-Atomkernen
Einer internationalen Kollaboration am Brookhaven National Laboratory (BNL) bei New York, der neben japanischen, amerikanischen und kanadischen Physikern auch Wissenschaftler der Fakultät für Physik der Universität Freiburg angehören, gelang erstmals die Produktion einer größeren Anzahl von doppelt-strange Atomkernen. Diese exotischen Atomkerne, oft auch Doppel-Lambda-Kerne genannt, enthalten neben den üblichen Kernbausteinen, den Protonen und den Neutronen (Nukleonen), zusätzlich zwei Lambda-Teilchen.
Im vorliegenden Experiment wurde nun erstmals ein gebundener Zustand aus zwei Lambdas, einem Proton und einem Neutron nachgewiesen. Solche exotischen Atomkerne, die man als überschwere doppelt-strange Wasserstoffkerne bezeichnen könnte, sind wichtige Studienobjekte zur genaueren Erforschung der Kernkräfte und der Kräfte zwischen Lambdas und zwischen Lambdas und Nukleonen. Es wird vermutet, dass solche s-Quarks enthaltenden Kerne unter extremen Bedingungen stabil sein könnten, Bedingungen, wie sie etwa im Inneren von Neutronensternen herrschen. Auch im sehr frühen Stadium der Entstehung des Kosmos könnten solche exotischen Systeme eine entscheidende Rolle gespielt haben. Ihr Studium ist Voraussetzung für die Simulation solcher kosmologischer Szenarien.
Die Schwierigkeit des technologisch sehr anspruchsvollen Experimentes besteht darin, unter Verwendung ausgefeilter Computertechniken aus etwa 100 Millionen registrierten Ereignissen die 30 – 40 Fälle herauszufinden, wo mit an Sicherheit grenzender Wahrscheinlichkeit ein doppelt-strange Kern gebildet wurde. Der experimentelle Aufbau umfasst auch ein aufwendiges Magnetspektrometer, dessen rückwärtiger Teil zwei großflächige Driftkammern (ostsempfindliche Nachweisgeräte) enthält, die in Freiburg gebaut, und von den Freiburger Mitarbeitern in das Experiment integriert wurden.
Aus den vorliegenden Ergebnissen lässt sich bereits schließen, dass die Wechselwirkung zwischen zwei Lambdas ziemlich schwach ist, was wahrscheinlich der Grund dafür ist, dass keine H-Teilchen gefunden wurden.
Aus den vorliegenden Ergebnissen lässt sich bereits schließen, dass die Wechselwirkung zwischen zwei Lambdas ziemlich schwach ist. Das ist wahrscheinlich der Grund dafür, dass in früheren Experimenten am BNL, an denen ebenfalls Freiburg beteiligt war, keine nur aus zwei Lambdas bestehenden Teilchen (H-Teilchen) nachgewiesen wurden: Die attraktive Kraft zwischen zwei Lambdas reicht nicht für eine Bindung. Nur im Verbund mit weiteren Nukleonen ist ein Zwei-Lambda-Zustand möglich.
Eine Fortführung der Experimente wird es erlauben, Bindungsenergien und Wechselwirkungen der Lambdas genauer zu untersuchen und daraus neue Informationen über den Aufbau der Kernbestandteile aus Quarks zu gewinnen.
Kontakt:
Dr. Horst Fischer
Dr. Jürgen Franz,
Prof. Dr. Hans Schmitt
Fakultät für Physik der Universität Freiburg
Hermann-Herder-Strasse 3
79104 Freiburg
Tel. 0761-203 5877
Fax0761-203 5705
E-Mail hschmitt@uni-freiburg.de
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…