TU Bergakademie Freiberg präsentiert Biomaterialien und Feuchtesensor auf der Materialica in München
Mit der Entwicklung und Optimierung von Biowerkstoffen beschäftigen sich Wissenschaftler am Institut für Keramische Werkstoffe (IKW) der TU Bergakademie Freiberg. Im Mittelpunkt der Forschungen stehen dabei u.a. Titanlegierungen. Sie gehören zu den wenigen metallischen Werkstoffen, die eine sehr gute Verträglichkeit mit dem menschlichen Körper aufweisen und finden aufgrund ihrer mechanischen Eigenschaften für Prothesen Anwendung, die lasttragende Funktionen erfüllen müssen, z. B. im Dentalbereich, für Knie- und Hüftendoprothesen.
Die durchschnittliche Verweilzeit von Hüftendoprothesen im menschlichen Körper liegt derzeit bei 10 bis 15 Jahren. Um jedoch auch jüngere Patienten mit einer Prothese zu versorgen oder der steigenden Lebenserwartung gerecht zu werden besteht weiterer Entwicklungsbedarf. Ziel ist dabei die Erhöhung der Langzeitbeständigkeit von Prothesen. Aktuelle Forschungsarbeiten am Freiberger IKW befassen sich deshalb mit der Oberflächenveredlung von Titanwerkstoffen und CoCr-Legierungen durch geeignete keramische Schichten. Hierbei werden Plasmaverfahren angewendet, aber auch Abscheidemethoden wie Sol-Gel-Technik oder Elektrophorese sind von hoher Relevanz.
Zur Erhöhung der Verschleißbeständigkeit von Hüftgelenkskugeln wird bspw. in Zusammenarbeit mit industriellen Forschungseinrichtungen an der Optimierung von Diamant-ähnlichen Kohlenstoffschichten (Diamond-like Carbon: DLC) gearbeitet. DLCs gehören zu den bioinerten Werkstoffen. Um die vorteilhaften Eigenschaften der harten, elastischen und verschleißbeständigen Kohlenstoffschichten zum Tragen zu bringen, sind exakte Anpassungen der Schichtstruktur an die konkreten Belastungen der Implantatoberfläche notwendig. Besonders im stark tribologisch beanspruchten Hüftgelenk konnten sich bisher DLC-Beschichtungen noch nicht durchsetzen. Problematisch sind hier Schichtabplatzungen, die zur katastrophalen Schädigung der Gelenkreibpaarung führen.
Ein weiterer Schwerpunkt auf dem Gebiet der Biomaterialien am Institut ist die Herstellung, Charakterisierung und Optimierung von faserverstärkter Biokeramik auf Hydroxylapatit-Basis. Natürlicher Knochen hat die Fähigkeit, Dichte und Gefüge an die äußeren Belastungen anzupassen. Infolge mechanischer Belastung werden Knochenzellen zum Knochenauf- und -umbau angeregt. Beim Knochenaufbau erfolgt über mehrere Zwischenschritte die Formation einige Mikrometer dicker Knochenlammellen, die konzentrisch um ein zentrales Blutgefäss entstehen. Trotz des für Keramiken typischen spröden Verhaltens ermöglicht der spezielle Gefügeaufbau des Knochenapatits ein schadenstoleranteres Verhalten. Der mineralische Anteil in Form dieses Knochenapatites beläuft sich auf ca. 70 Gewichtsprozent. Ein weiterer Bestandteil sind Kollagenfasern, die bei mechanischer Belastung Zugkräfte aufnehmen. Knochen ist demzufolge ein biologischer Verbundwerkstoff bestehend aus der gefügeoptimierten, keramischen Komponente Knochenapatit, den fasrigen Kollagenen sowie weiteren nicht-kollagenen Proteinen und Körperflüssigkeit. Die Fertigung von faserverstärkten Biokeramiken auf Hydroxylapatit-Basis beschäftigt sich mit der synthetischen Nachempfindung des natürlichen Knochenaufbaus. Aufgrund der chemischen und strukturellen Ähnlichkeit dieser neuartigen Biomaterialien und des natürlichen Knochens wird eine deutliche Verbesserung der Bioverträglichkeit und schließlich der Langzeitbeständigkeit erwartet.
Kontakt:
TU Bergakademie Freiberg
Fakultät für Werkstoffwissenschaften und Werkstofftechnologie
Institut für Keramische Werkstoffe
Frau Dr. Annett Dorner-Reisel
Tel.: 03731/39-2203
E-Mail: dorner@anw.ikw.tu-freiberg.de
Einen keramischen Feuchtesensor zur Messung der Luftfeuchte entwickelten Wissenschaftler am Institut für keramische Werkstoffe der TU Bergakademie Freiberg. Dieser Sensor, 6 mal 8 mm groß, besteht aus einem keramischen Substrat (Aluminiumoxid), auf das in Dickschichttechnik sowohl die kammartig strukturierten Elektroden als auch die sensitive keramische Schicht aufgebracht werden. Die 40 µm dicke sensitive Schicht ist hochporös mit einem großen Anteil Poren im Bereich bis ca. 10 Nanometer. Der Sensor arbeitet nach dem kapazitiven Messprinzip, d. h. bei Veränderung der Feuchte wird Wasser von der keramischen Schicht adsorbiert bzw. desorbiert, was aufgrund der hohen Dielektrizitätskonstante des Wassers eine messbare Kapazitätsänderung in der Schicht bewirkt. Charakteristisch für den Sensor ist ein Arbeitsbereich von 10 bis 80% relativer Feuchte bei Raumtemperatur. Zur Auswertung der Messsignale wird er mit einem ASIC ausgestattet.
Gegenwärtig laufen am Freiberger Institut Forschungsarbeiten zur Entwicklung eines Feuchtesensors, der bei Temperaturen bis 200°C messen kann. Eingesetzt werden könnte dieser Sensor bei metallurgischen Prozessen, um beispielsweise die Feuchte in Verbrennungsgasen zu bestimmen.
Beide Projekte werden vom Bundesministerium für Bildung und Forschung (BMBF) als Verbundvorhaben mit Industriepartnern gefördert.
Kontakt:
Institut für Keramische Werkstoffe
Frau Rosemarie Dittrich
Tel.: 03731/39-2644, Fax: 03731/39-3662
E-Mail: dittrich@anw.ikw.tu-freiberg.de
Präsentiert werden die Forschungsprojekte des Institutes für Keramische Werkstoffe der TU Bergakademie Freiberg vom 1. bis 4. Oktober 2001 auf der Münchner Messe MATERIALICA in der Halle C1 am Stand C1.204.
Media Contact
Alle Nachrichten aus der Kategorie: Messenachrichten
Neueste Beiträge
Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane
…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….
Neue Perspektiven für die Materialerkennung
SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…
Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck
Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…