Katalysator auch für den Kaltstart
Materialforscher am Fraunhofer IWM analysieren Abbau von Schadstoffen und entwickeln völlig neue Designregeln.
Gemeinsam haben deutsche und finnische Materialforscher neue Erkenntnisse über die Reaktionsabläufe in Fahrzeug-Katalysatoren gewonnen. Werden sie beachtet, dann ist der Schadstoffabbau künftig auch auf den ersten Kilometern mit kaltem Motor und kaltem Kat möglich. Die Details wurden am 5. Dezember in der Vorab-online-Ausgabe der Zeitschrift „Nature Materials“ veröffentlicht.
Das Ergebnis kommt zunächst ganz unscheinbar daher: Mitarbeiter des Fraunhofer-Instituts für Werkstoffmechanik IWM und des Materialforschungszentrum der Universität Freiburg berechnen und erklären zusammen mit Kollegen der finnischen Universität Jyväskylä, die katalytischen Eigenschaften von Palladium-Nanopartikeln auf einer keramischen Oberfläche und entdecken dabei einen neuartigen Katalysemechanismus. Bei genauerem Hinsehen haben diese Resultate jedoch weit reichende Konsequenzen für die Luftreinhaltung. Die Forschergruppe um Michael Moseler fand nämlich, dass besonders kleine Palladiumpartikel schon bei tiefen Temperaturen Sauerstoffmoleküle (O2) aus der Umgebung zu atomarem Sauerstoff aufbrechen und in ihrem Innern speichern. Das dabei entstandene Palladium-Nanooxid zieht Kohlenmonoxid (CO) aus der Umgebung an, setzt gleichzeitig den atomaren Sauerstoff wieder frei und verbrennt dabei das giftige CO zu unschädlichem Kohlendioxid. Hinter dieser Entdeckung und der ihr zugrunde liegenden Modellierung der „Oxidation magnesiumgeträgerter Palladium-Cluster“ verbergen sich intensive Forschungsarbeit und wertvolle Erkenntnisse für Katalysatorenhersteller der Fahrzeugindustrie.
Es geht um die katalytischen Eigenschaften von Übergangsmetallen, und im Besonderen von Palladium. Dieses kostbare Metall sitzt in den Keramikwaben der heutigen Autokatalysatoren. Dort beschleunigt es die entscheidenden Reaktionen, die zur Luftreinhaltung erforderlich sind. So sorgt es unter anderem dafür, dass Kohlenmonoxid in das für die Atemluft unschädliche Kohlendioxid oxidiert wird, oder dass „saures“ Stickstoffmonoxid mit Kohlenmonoxid zu Stickstoff und Kohlendioxid reagiert. Doch obwohl Autokatalysatoren mittlerweile seit 20 Jahren eingesetzt werden, „ist ihre genaue Funktionsweise immer noch unverstanden“, erläutert Michael Moseler, Mitarbeiter am Fraunhofer IWM Freiburg und am Materialforschungszentrum der Universität.
Einige zehn Nanometer sind die Partikel in den gängigen Kats groß. Diese sind riesig im Vergleich zu den atomaren Clustern, die Moseler und seine Kollegen untersuchen. Die Frage, so Moseler, war zunächst: „Wie und wo reagiert der Sauerstoff mit dem Kohlenmonoxid, und wie kann man diese Reaktion beschleunigen?“ Die Antwort darauf wurde aber nicht durch Experimente, sondern mit Hilfe des Superrechners im John von Neumann-Institut für Computing in Jülich gefunden. Bei der quantenmechanischen Berechnung von neun Palladium-Atomen auf einem Keramikträger zeigte sich, dass die Sauerstoffatome schon bei sehr niedrigen Temperaturen – circa minus 20 Grad Celsius – angelagert wurden, um anschließend bei ähnlich tiefen Temperaturen mit dem Kohlenmonoxid zu reagieren.
Anders gesagt: Die Oxidation des Kohlenmonoxids, ist auch bei kaltem Motor, kaltem Kat und niedrigen Außentemperaturen kein Problem – „wenn die Keramik mit ultrafeinen Nanopartikeln beschichtet ist“, betont Michael Moseler. Denn nur die kleinen Partikel mit wenigen Atomen reagieren so schnell. „Größere Palladiuminseln katalysieren erst von 100 Grad Celsius aufwärts“, erläutert Michael Moseler.
Das herauszufinden, hat die Forscher aus Freiburg und dem finnischen Jyväskylä zwei Jahre gekostet. Es galt ein Rechenmodell mit den entscheidenden Parametern zu entwickeln, und „geduldig auf die häppchenweise Zuteilung von 100000den von Prozessorstunden zu warten,“ stöhnt Bernd Huber, Doktorand am Freiburger Materialforschungszentrum und Erstautor der Publikation. Der Aufwand hat sich gelohnt. Experimentelle Untersuchungen von Ulrich Heiz, Professor an der Technischen Universität München, geben den Theoretikern in allen wesentlichen Punkten Recht. Im Gegensatz zu den Experimentatoren haben die Theoretiker um Moseler jedoch Einblick in die grundlegenden atomistischen Prozesse und damit in mögliche neue Konzepte für Katalysatoren.
„Wenn Hersteller von Katalysatoren die Designvorgaben berücksichtigen, die sich aus unserer Arbeit ergeben, dann wird die Luft bald noch sauberer sein“, ist Michael Moseler überzeugt. Im Detail stellen Moseler und seine Kollegen ihre Arbeit, die von der Deutschen Forschungsgemeinschaft unterstützt wird, ab 5. Dezember in der online-Ausgabe und danach in der Januar-Ausgabe 2006 der Zeitschrift „Nature Materials“ vor.
Media Contact
Weitere Informationen:
http://www.iwm.fraunhofer.de/Alle Nachrichten aus der Kategorie: Automotive
Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.
Neueste Beiträge
Überlebenskünstler im extremen Klima der Atacama-Wüste
Welche Mikroorganismen es schaffen, in den extrem trockenen Böden der Atacama-Wüste zu überleben, und welche wichtigen Funktionen sie in diesem extremen Ökosystem übernehmen – zum Beispiel bei der Bodenbildung –,…
Hoffnung für Behandlung von Menschen mit schweren Verbrennungen
MHH-Forschende entwickeln innovatives Medikament, um die Abstoßung von Spenderhaut-Transplantaten zu verhindern. Wenn Menschen schwere Verbrennungen erleiden, besteht nicht nur die Gefahr, dass sich die Wunde infiziert. Der hohe Flüssigkeitsverlust kann…
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…