Sonden für Lichtmikroskopie mit 40 Nanometern Auflösung entwickelt und serienfertig

Entwicklung der Kasseler Nanotechnologie ist Durchbruch für die Lichtmikroskopie

Ein Durchbruch in der Lichtmikroskopie zu wesentlich höheren Auflösungen stellt eine von Kasseler Wissenschaftlern entwickelte und nun auch serienmäßig reproduzierbare Sonde dar. In der Lichtmikroskopie, mit der u.a. Oberflächen und Substrate etwa auf Datenträgerschichten untersucht werden, kann durch die Kasseler Koaxial-Sonde eine sechsfach höhere Auflösung und damit Genauigkeit erreicht werden. In einem konventionellen Lichtmikroskop sind die kleinsten noch sichtbaren Strukturen aufgrund von Beugungsvorgängen durch die Wellenlänge des Lichtes bestimmt. Das bedeutet, dass bislang nur eine Strukturauflösung von 200 bis 380 Nanometern erreicht werden konnte. Mit dem Elektronenmikroskop können zwar Strukturen, die noch kleiner als die Wellenlänge des sichtbaren Lichtes sind, sichtbar gemacht werden, allerdings nur unter Vakuumbedingungen und leider nicht immer zerstörungsfrei. In neuerer Zeit bietet daher die Mikro- und Nanotechnologie zusätzliche Entwicklungsmöglichkeiten, die die Kasseler Wissenschafter Dr. Egbert Oesterschulze und Dr. Iwo Rangelow im Institut für Technische Physik im Institut für Mikrostrukturtechnologie und Analytik (IMA) der Universität Kassel unter Leitung von Prof. Dr. Rainer Kassing genutzt haben.

Dabei war eine große Schwierigkeit zu überwinden: Denn wenn man versucht Licht, z.B. eines Lasers, durch eine Öffnung zu senden, die kleiner als die Wellenlänge des Lichtes ist, so wird fast die gesamte Lichtintensität reflektiert und nur ein winziger Bruchteil von ca. 10-5 der Anfangsintensität dringt durch die Öffnung. Diese klingt jedoch exponentiell, d.h. auf außerordentlich kurzer Distanz, auf praktisch Null ab. Geht man jedoch mit einem optisch zu untersuchenden Substrat ganz nahe (im Nanometerbereich) an diese Öffnung heran, so kann die durch die kleine Öffnung durchtretende Lichtmenge zur optischen Charakterisierung des Substrates genutzt werden. Damit hat man also eine Auflösung erreicht, die nicht wie beim klassischen Mikroskop durch die Wellenlänge, sondern durch die Größe der Öffnung – auch Apertur genannt – bestimmt wird. Da man zur Aufnahme eines Bildes die Öffnung über die zu untersuchende Oberfläche bewegt bzw. rastert, nennt man diese Art der Mikroskopie auch „Optische Raster-Nahfeld-Mikroskopie“, bzw. englisch „Scanning Nearfield Optical Microscopy“ (SNOM). Für die praktische Durchführung von Messungen hat es sich als vorteilhaft erwiesen, die ultrakleinen Öffnungen in Hohlspitzen zu integrieren, da diese viel besser zur Abtastung der Oberfläche geeignet sind.

Ein Problem für die SNOM besteht nun darin, diese kleinen Hohlspitzen mit der integrierten Öffnung mit den Methoden der Mikro-Technologie reproduzierbar herzustellen. Das gelang erstmals der Arbeitsgruppe von Dr. Dipl.-Phys. Egbert Oesterschulze mit einem neuartigen zum Patent eingereichten Verfahren. So ist es möglich Hohlspitzen mit etwa 40 bis 80 Nanometern großen Öffnungen zu realisieren (s. Abb 1 a)).

„copyright: Universität Gesamthochschule Kassel, Institut für Mikrostrukturtechnologie und Analytik“

Doch es ist leicht vorstellbar, dass solch kleine Öffnungen nur sehr wenig Licht durchlassen- so, als wollte man etwa durch eine eng zulaufende Kanüle hindurch etwas erkennen. Um diesen Nachteil der reinen Apertursensoren auszugleichen, ging die Arbeitsgruppe um Oesterschulze einen neuen Weg. Sie zogen in die Mitte des nur weniger als ein tausendstel Haardruchmesser großen Apertursensors einen Draht ein und erhöhte so die durchgelassene Lichtintensität, vergleichbar, als schöbe man durch die oben beschriebene Kanüle noch ein Fädchen ohne jedoch die Kanüle zu berühren. Damit wird das elektrische Feld der Lichtwelle zwischen Innen- und Außenleiter geführt und somit die Lichtintensität deutlich gesteigert. Der Grundgedanke dabei ist der gleiche wie bei jedem elektrischen Koaxialkabel (z.B. beim Antennenkabel eines Fernsehers). Durch ein solches Antennenkabel mit einem Durchmesser von wenigen Millimetern gehen elektromagnetische Wellen mit Wellenlängen von einigen Metern, und zwar praktisch ohne Intensitätsverlust. Dies ist nur möglich, weil in dem Kabel mittig der Innenleiter zur Feldführung angebracht ist. Daher nennt man diese Vorrichtung Koaxialleiter.

Weltweit erstmals Nano-Sonde mit Nano-Koaxialleiter hergestellt Im Kasseler Institut für Mikrostrukturtechnologie und Analytik gelang es weltweit erstmals, eine solche Sonde mit einem sogenannten Koaxialleiter (s. Abb. 1b)) zu versehen. Allerdings wurde dieser Innenleiter noch einzeln produziert, d.h. zunächst wurden die Apertursensoren hergestellt und dann nachträglich der Innenleiter des der Koaxialleiters durch die Abscheidung von leitfähigem Material mit einem fokussierten Ionenstrahl (FIB) realisiert.

Nun auch Serienproduktion möglich Aus der Phase des Prototyps in den Bereich der Serienreife brachten weitere Arbeiten im IMA die sogenannte Kasseler Koaxial-Apertur-Sonde. Hier gelang es der Arbeitsgruppe von Dr. Ivo Rangelow, solche Apertur-Sonden mit einem Koaxial-Leiter (s. Abb. 1c)) serienmäßig herzustellen. Damit ist der Weg zur industriellen Nutzung dieser Technologie geebnet. Diese Methode wurde ebenfalls zum Patent angemeldet.

Im Institut für Technische Physik, in dem Physiker, Elektrotechniker, Chemiker und Biologen zusammenarbeiten, wird seit einigen Jahren versucht, mit den Mitteln der Mikro- und Nanotechnologie durch die Kombination von Physik und Technologie, und zwar von den Grundlagen bis zur Anwendung wissenschaftliche und technische Fortschritte zu erzielen.

Media Contact

Ingrid Hildebrand Pressemitteilung der GhK

Weitere Informationen:

http://www.uni-kassel.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…